terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Abstract

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents. The development of B. bruxellensis in wine can change the sensory properties of wine due to the production of undesirable aromas. The present work focuses on i) the biofilm-forming ability of B. bruxellensis, derived from Greek wines, on stainless steel surfaces ii) the ability of the adhered cell to cause wine spoilage iii) new treatment to handle the contamination. Three wines from different regions of Greece were collected and subjected in molecular analyses and identification at species level. RAPD (Random Amplified Polymorphic DNA) genomic fingerprinting with the oligo-nucleotide primer M13 was used, combined with Matrix Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. Strain differentiation of B. bruxellensis different strains was achieved by rep-PCR fingerprinting method with the oligo-nucleotide primer GTG5. For the biofilm formation assay, stainless steel coupons were placed in test tubes containing sterilized Ringer solution and pure cultures of the different B. bruxellensis strains was inoculated at an initial population of approximately 107 CFU/mL. The tubes were incubated at 28 °C for 3 hours to allow attachment of the yeast cells onto the coupons surface. Biofilm growth was evaluated with the bead vortexing method. Finally, different treatments were applied in order to prevent the adherence of B. bruxellensis strains to the coupons. Overall, we showed that the attachment and biofilm formation capacity of the spoilage yeast is influenced by the strain effect and tree different types of adherences were noticed. Additionally, all tested treatments achieved to decrease the attached yeast cells proposing a new way of handling B. bruxellensis contamination.

References

[1] Dimopulou, M., Renault, M., Dols-Lafargue, M., Albertin-Leguay, W., Herry, J.-M., Bellon-Fontaine, M.-N., Masneuf-Pomarede, I. (2019). Microbiological, biochemical, physicochemical surface properties and biofilm forming ability of Brettanomyces bruxellensis (preprint). Microbiology.

[2] Agnolucci, M., & al, e. (2017). Brettanomyces bruxellensis yeasts: an impact on wine and winemaking. World Journal of Microbiology and Biotechnology, 33.

[3] Di Toro, M., & al, e. (2015). Intraspecific biodiversity and ‘spoilage potential’ of Brettanomyces bruxellensis in Apulian wines. Elsevier, 102-108.

[4] Cibrario, A., Miot-Sertier, C., Paulin, M., Bullier, B., Riquier, L., Perello, M.-C., de Revel, G., Albertin, W., Masneuf-Pomarède, I., Ballestra, P., Dols-Lafargue, M. (2020). Brettanomyces bruxellensis phenotypic diversity, tolerance to wine stress and wine spoilage ability. Food Microbiology, 87, 103379.

Publication date: June 4, 2025

Type: Poster

Authors

Aikaterini Tzamourani1, Nikolaos Mourdoukoutas1, Maria Dimopoulou1,*

1 Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Ag. Spyridonos St., 12243 Egaleo, Greece

Contact the author*

Keywords

wine spoilage, biofilm formation, Brettanomyces, spoilage treatement

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

South American Creole grapevines: new varieties identified in the Caravelí Valley (Peru) and their aromatic profile

The valley of Caravelí (Peru) received the first vine plants in colonial times and the tradition of cultivation is maintained thanks to its terroir and artisanal techniques.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Evaluation of shelf life of white wines in aluminium bottle: a modelling approach

Aluminum is a particularly interesting material for packaging because it is environmentally sustainable, lighter than standard glass bottles, and protective against light radiation [1].

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.

Impact of yeast strain and aging time on the secondary metabolites, macromolecule composition, and sensory attributes of sparkling wines elaborated by the traditional method

The occurrence of aroma and macromolecule constituents in sparkling wines, directly influencing their organoleptic characteristics, is affected by several factors, including the grape cultivar, base-wine particularities, inoculated yeasts, the aging time, and winemaking practices [1].