terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Abstract

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents. The development of B. bruxellensis in wine can change the sensory properties of wine due to the production of undesirable aromas. The present work focuses on i) the biofilm-forming ability of B. bruxellensis, derived from Greek wines, on stainless steel surfaces ii) the ability of the adhered cell to cause wine spoilage iii) new treatment to handle the contamination. Three wines from different regions of Greece were collected and subjected in molecular analyses and identification at species level. RAPD (Random Amplified Polymorphic DNA) genomic fingerprinting with the oligo-nucleotide primer M13 was used, combined with Matrix Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. Strain differentiation of B. bruxellensis different strains was achieved by rep-PCR fingerprinting method with the oligo-nucleotide primer GTG5. For the biofilm formation assay, stainless steel coupons were placed in test tubes containing sterilized Ringer solution and pure cultures of the different B. bruxellensis strains was inoculated at an initial population of approximately 107 CFU/mL. The tubes were incubated at 28 °C for 3 hours to allow attachment of the yeast cells onto the coupons surface. Biofilm growth was evaluated with the bead vortexing method. Finally, different treatments were applied in order to prevent the adherence of B. bruxellensis strains to the coupons. Overall, we showed that the attachment and biofilm formation capacity of the spoilage yeast is influenced by the strain effect and tree different types of adherences were noticed. Additionally, all tested treatments achieved to decrease the attached yeast cells proposing a new way of handling B. bruxellensis contamination.

References

[1] Dimopulou, M., Renault, M., Dols-Lafargue, M., Albertin-Leguay, W., Herry, J.-M., Bellon-Fontaine, M.-N., Masneuf-Pomarede, I. (2019). Microbiological, biochemical, physicochemical surface properties and biofilm forming ability of Brettanomyces bruxellensis (preprint). Microbiology.

[2] Agnolucci, M., & al, e. (2017). Brettanomyces bruxellensis yeasts: an impact on wine and winemaking. World Journal of Microbiology and Biotechnology, 33.

[3] Di Toro, M., & al, e. (2015). Intraspecific biodiversity and ‘spoilage potential’ of Brettanomyces bruxellensis in Apulian wines. Elsevier, 102-108.

[4] Cibrario, A., Miot-Sertier, C., Paulin, M., Bullier, B., Riquier, L., Perello, M.-C., de Revel, G., Albertin, W., Masneuf-Pomarède, I., Ballestra, P., Dols-Lafargue, M. (2020). Brettanomyces bruxellensis phenotypic diversity, tolerance to wine stress and wine spoilage ability. Food Microbiology, 87, 103379.

Publication date: June 4, 2025

Type: Poster

Authors

Aikaterini Tzamourani1, Nikolaos Mourdoukoutas1, Maria Dimopoulou1,*

1 Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Ag. Spyridonos St., 12243 Egaleo, Greece

Contact the author*

Keywords

wine spoilage, biofilm formation, Brettanomyces, spoilage treatement

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Characterisation of Sicilian Nero d’Avola grape and wine: A preliminary study

The chemical composition and the sensory characteristics of wine result from dynamic interactions between several factors including grape variety, soil, viticultural techniques, climate conditions, yeasts metabolism, oenological approaches. Recently, Grigg et al.

Chemical and sensory evolution of total and partial dealcoholized wine in a can

In recent years, wine consumption has been evolving towards new trends. On the one hand, awareness of health and responsible consumption has been growing, and with it, the demand for wines with lower or without alcohol content [1].

Wine tartaric stability based on hydrogel application

Tartrates are salts of tartaric acid that occur naturally in wine and lead to sediments that cause consumers’ rejection. There are currently different treatments to prevent its occurrence, with cold stabilization being the most traditional and well-known method.

Studying the redox state of wines under oxidative processes with a multi-parametric analysis

The detection of reducing compounds such as phenolic acids, anthocyanins or tannins is of prime importance to decipher on the antioxidant and anti-aging properties of wines.

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].