terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Wine, environment, health and sustainability 9 Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Abstract

Wine lees are the sediment that settles at the bottom of wine barrels, tanks, or bottles during the winemaking process and represent the second most significant by-product of wineries. Wine lees consist primarily of dead yeast cells which contain a complex mixture of both organic and inorganic molecules, such as proteins, peptides, polysaccharides, sterols, and long-chain fatty acids. This study aimed to evaluate the potential role of wine lees in combating grapevine pathogens. Six different wine yeast species were tested in fifteen fermentation schemes under monoculture and mixed-culture conditions. Fermentations were conducted in a laboratory medium that mimicked wine conditions (grape juice medium). The fermentation rate was monitored daily using an enzymatic method (Glucose/Fructose) following the OIV official protocol along with CO2 emission measurements. Following fermentation, yeast biomass was autolyzed and digested to produce High Molecular Weight Biomolecule Mixtures (HMW-BM) and Low Molecular Weight Biomolecule Mixtures (LMW-BM). These biomolecule mixtures were then evaluated in vitro for their ability to inhibit the growth of Botrytis cinerea, Aspergillus carbonarius, Phaeomoniella chlamydospora, and Phaeoacremonium minimum. Our results indicate that the most effective biomolecule mixture with a protective mode of action against grapevine pathogens was LMW-BM.

Aknowledgements

The research project entitled «reLees» is implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union – NextGenerationEU (H.F.R.I. Project Number:15100).

References

[1] Tzamourani A., Taliadouros V., Paraskevopoulos I., Dimopoulou M. Developing a novel selection method for alcoholic fermentation starters by exploring wine yeast microbiota from Greece. Frontiers in Microbiology 2023; 14. https://doi.org/10.3389/fmicb.2023.1301325.

[2] Tzamourani, A., Evangelou, A., Ntourtoglou, G., Lytra, G., Paraskevopoulos, I., Dimopoulou, M. Effect of Non-Saccharomyces Species Monocultures on Alcoholic Fermentation Behavior and Aromatic Profile of Assyrtiko Wine. Appl. Sci. 2024; 14, 1522. https://doi.org/10.3390/app14041522.

[3] Tzamourani, A., Paramithiotis, S., Favier, M., Coulon, J., Moine, V., Paraskevopoulos, I., Dimopoulou, M. New Insights into the Production of Assyrtiko Wines from the Volcanic Terroir of Santorini Island Using Lachancea thermotolerans. Microorganisms 2024; 12, 786. https://doi.org/10.3390/microorganisms12040786.

Publication date: June 4, 2025

Type: Poster

Authors

Maria Dimopoulou1,*, Alexandra Evangelou1, Danai Gkizi1, Aikaterini Tzamourani1, Angeliki Kasioura1, Artemis Tsioka1, George Ntourtoglou1, Urska Vrhovsek2, Panagiotis Arapitsas1

1 Department of Wine, Vine and Beverage Sciences, University of West Attica
2 Metabolomic Unit, Edmund Mach Foundation, San Michele all Adige, Italy

Contact the author*

Keywords

wine lees, antimicrobial molecules, grapevine pathogens

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

A facile and robust method for the quantification of polyphenols in red wine via NMR

Nuclear magnetic resonance spectroscopy (NMR) is a high-tech analytical method that recently found its way into the field of wine analysis with special focus on wine authentication.

Novel insights into Passito wines aroma typicality. Rationalizing the markers of varietal and geographical origin of Amarone DOCG

Valpolicella is a famous Italian wine-producing region (Paronetto & Dellaglio, 2011), whose main characteristic is the extensive use of the post-harvest withering technique, which takes place in naturally ventilated rooms called ‘fruttai’ (Bellincontro et al., 2016).

Composition and biological potential of grape and wine phenolic compounds

Polyphenols are common in human diets, primarily in plant-derived food and beverages. They influence multiple sensory properties such as aroma, flavour, colour, and taste, such as astringency and bitterness [1]. The major phenolic compounds in grapes and wines are anthocyanins and tannins (proanthocyanidins or condensed tannins).

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Potential of native Uruguayan yeast strains for production of Tannat wine

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression.