terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Wine, environment, health and sustainability 9 Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Abstract

Wine lees are the sediment that settles at the bottom of wine barrels, tanks, or bottles during the winemaking process and represent the second most significant by-product of wineries. Wine lees consist primarily of dead yeast cells which contain a complex mixture of both organic and inorganic molecules, such as proteins, peptides, polysaccharides, sterols, and long-chain fatty acids. This study aimed to evaluate the potential role of wine lees in combating grapevine pathogens. Six different wine yeast species were tested in fifteen fermentation schemes under monoculture and mixed-culture conditions. Fermentations were conducted in a laboratory medium that mimicked wine conditions (grape juice medium). The fermentation rate was monitored daily using an enzymatic method (Glucose/Fructose) following the OIV official protocol along with CO2 emission measurements. Following fermentation, yeast biomass was autolyzed and digested to produce High Molecular Weight Biomolecule Mixtures (HMW-BM) and Low Molecular Weight Biomolecule Mixtures (LMW-BM). These biomolecule mixtures were then evaluated in vitro for their ability to inhibit the growth of Botrytis cinerea, Aspergillus carbonarius, Phaeomoniella chlamydospora, and Phaeoacremonium minimum. Our results indicate that the most effective biomolecule mixture with a protective mode of action against grapevine pathogens was LMW-BM.

Aknowledgements

The research project entitled «reLees» is implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union – NextGenerationEU (H.F.R.I. Project Number:15100).

References

[1] Tzamourani A., Taliadouros V., Paraskevopoulos I., Dimopoulou M. Developing a novel selection method for alcoholic fermentation starters by exploring wine yeast microbiota from Greece. Frontiers in Microbiology 2023; 14. https://doi.org/10.3389/fmicb.2023.1301325.

[2] Tzamourani, A., Evangelou, A., Ntourtoglou, G., Lytra, G., Paraskevopoulos, I., Dimopoulou, M. Effect of Non-Saccharomyces Species Monocultures on Alcoholic Fermentation Behavior and Aromatic Profile of Assyrtiko Wine. Appl. Sci. 2024; 14, 1522. https://doi.org/10.3390/app14041522.

[3] Tzamourani, A., Paramithiotis, S., Favier, M., Coulon, J., Moine, V., Paraskevopoulos, I., Dimopoulou, M. New Insights into the Production of Assyrtiko Wines from the Volcanic Terroir of Santorini Island Using Lachancea thermotolerans. Microorganisms 2024; 12, 786. https://doi.org/10.3390/microorganisms12040786.

Publication date: June 4, 2025

Type: Poster

Authors

Maria Dimopoulou1,*, Alexandra Evangelou1, Danai Gkizi1, Aikaterini Tzamourani1, Angeliki Kasioura1, Artemis Tsioka1, George Ntourtoglou1, Urska Vrhovsek2, Panagiotis Arapitsas1

1 Department of Wine, Vine and Beverage Sciences, University of West Attica
2 Metabolomic Unit, Edmund Mach Foundation, San Michele all Adige, Italy

Contact the author*

Keywords

wine lees, antimicrobial molecules, grapevine pathogens

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effect of bleaching with different agents on protein hydrolysate characteristics

High temperatures can reduce the phenolic content of grapes, especially anthocyanins and copigments involved in colour stabilisation of red wines [1]. This could make it difficult to maintain stable colour during storage [2].

Physical-chemical characterization of Moscatel de Setúbal fortified wines from different vintages

Moscatel de Setúbal is a Portuguese fortified wine with Protected Designation of Origin (PDO Setúbal), made from Moscatel de Setúbal grape variety (Muscat of Alexandria) [1].

Oenological performances of new white grape varieties

The wine industry works to minimize pesticides and adapt to climate change. Breeding programs have developed disease-resistant grape varieties, particularly against downy and powdery mildew, to minimize pesticide applications [1]. However, their enological potential remains underexplored.

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].