terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

Abstract

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor. However, these bottles do not offer protection to light exposure that, along with temperature and oxygen, is the key factor affecting wine evolution, making rosé wines particularly prone to rapid degradation during storage. While the impact of light-struck fault has been extensively studied in white wines, research on rosé wines remains limited.

This study aimed to evaluate the relative effects of light, temperature, and oxygen on the color and volatile composition of rosé wines, employing a Response Surface Methodology (RSM) approach. Two different wines were subjected to varying levels of oxygen (1-5 mg/L), temperature (15-40°C), light (0-4000 lux), and time (15-60 days), resulting in 31 experimental points per wine. Key variables analyzed were free and total SO2, catechins, polyphenols, CIELAB color parameters, and 40 volatile organic compounds (VOCs), including low molecular weight sulfur compounds (LMWSCs), polyfunctional thiols (PFTs), terpenes, and norisoprenoids.

Results showed that free and total SO2were primarily affected by oxygen, while color parameters were influenced by light (L* and b*), temperature (b*), and oxygen (a*). LMWSCs were influenced by light, time, and temperature, with light affecting methanethiol and dimethyl disulfide, and temperature influencing dimethyl sulfide. PFTs and norisoprenoids were significantly influenced by light exposure, with TDN and vitispirane also affected by temperature, and β-damascenone by oxygen. Temperature also influenced the concentration of various terpenes, including nerol, linalool, β-myrcene, and β-pinene.

Within the experimental range studied, light exposure had the greatest impact on color, LMWSCs, PFTs, and norisoprenoids. Temperature played a key role in modulating the evolution of several volatile compounds over time, with its effect always associated with time, indicating a progressive impact throughout storage. In contrast, no interaction between light or oxygen and time was observed, suggesting that their effects were already completed before the minimum time assessed (15 days). These results provide an insight into the mechanisms involved in the evolution of rosé wines under different storage conditions.

References

Luzzini, G., Slaghenaufi, D., & Ugliano, M. (2022). Approaches to the classification of wine aroma ageing potential. Applications to the case of terpenoids in Valpolicella red wines. Oeno One, 56(3), 221–232. https://doi.org/10.20870/oeno-one.2022.56.3.5393

Ugliano, M. (2013). Oxygen contribution to wine aroma evolution during bottle aging. Journal of Agricultural and Food Chemistry, 61(26), 6125–6136. https://doi.org/10.1021/jf400810v

Publication date: June 4, 2025

Type: Poster

Authors

Leonardo Vanzo1,*, Margherita Diella1, Davide Slaghenaufi1, Maurizio Ugliano1

1 Department of Biotechnology, University of Verona, Italy

Contact the author*

Keywords

light-strike, oxidation, thermal stress, rosé wine, stress resistance

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

Metal reducing agents (Fe and Al) as possible agents to measure the dimensions of the hydrogen sulfide (H2S) pool of precursors in wines

Reductive wine fault is characterized by the presence of odors such as rotten eggs or spoiled camembert cheese, originating from hydrogen sulfide (H2S) and methanethiol (MeSH) [1]. These compounds stabilize in polysulfide forms, creating a complex pool of precursors that will revert to both molecules when the environment becomes anoxic [2].

Aroma compounds and physical-chemical characterization of grapes and wines from Mount Etna “relic-jewels” vine genotypes

In the last few decades, minor vine genotypes traditionally cultivated on the Mount Etna slopes, have attracted the interest of both researchers and vine growers, as they offer an interesting oenological profile.

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.