terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

Abstract

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor. However, these bottles do not offer protection to light exposure that, along with temperature and oxygen, is the key factor affecting wine evolution, making rosé wines particularly prone to rapid degradation during storage. While the impact of light-struck fault has been extensively studied in white wines, research on rosé wines remains limited.

This study aimed to evaluate the relative effects of light, temperature, and oxygen on the color and volatile composition of rosé wines, employing a Response Surface Methodology (RSM) approach. Two different wines were subjected to varying levels of oxygen (1-5 mg/L), temperature (15-40°C), light (0-4000 lux), and time (15-60 days), resulting in 31 experimental points per wine. Key variables analyzed were free and total SO2, catechins, polyphenols, CIELAB color parameters, and 40 volatile organic compounds (VOCs), including low molecular weight sulfur compounds (LMWSCs), polyfunctional thiols (PFTs), terpenes, and norisoprenoids.

Results showed that free and total SO2were primarily affected by oxygen, while color parameters were influenced by light (L* and b*), temperature (b*), and oxygen (a*). LMWSCs were influenced by light, time, and temperature, with light affecting methanethiol and dimethyl disulfide, and temperature influencing dimethyl sulfide. PFTs and norisoprenoids were significantly influenced by light exposure, with TDN and vitispirane also affected by temperature, and β-damascenone by oxygen. Temperature also influenced the concentration of various terpenes, including nerol, linalool, β-myrcene, and β-pinene.

Within the experimental range studied, light exposure had the greatest impact on color, LMWSCs, PFTs, and norisoprenoids. Temperature played a key role in modulating the evolution of several volatile compounds over time, with its effect always associated with time, indicating a progressive impact throughout storage. In contrast, no interaction between light or oxygen and time was observed, suggesting that their effects were already completed before the minimum time assessed (15 days). These results provide an insight into the mechanisms involved in the evolution of rosé wines under different storage conditions.

References

Luzzini, G., Slaghenaufi, D., & Ugliano, M. (2022). Approaches to the classification of wine aroma ageing potential. Applications to the case of terpenoids in Valpolicella red wines. Oeno One, 56(3), 221–232. https://doi.org/10.20870/oeno-one.2022.56.3.5393

Ugliano, M. (2013). Oxygen contribution to wine aroma evolution during bottle aging. Journal of Agricultural and Food Chemistry, 61(26), 6125–6136. https://doi.org/10.1021/jf400810v

Publication date: June 4, 2025

Type: Poster

Authors

Leonardo Vanzo1,*, Margherita Diella1, Davide Slaghenaufi1, Maurizio Ugliano1

1 Department of Biotechnology, University of Verona, Italy

Contact the author*

Keywords

light-strike, oxidation, thermal stress, rosé wine, stress resistance

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effects of urea and nano-urea foliar treatments on the aromatic profile of Monastrell wines

Foliar application of urea has proven to be an effective method for increasing the amino acid content in grapes, especially when the vineyard has additional nitrogen needs. These treatments can prevent problems of stucking fermentation during winemaking.

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.

Consumer perception and preferences regarding grape varieties resilient to climate change

Innovative solutions have been developed for winemakers to adopt in their cultivation practices [1]. Two of the implementations addressed in this study are the use of strains adapted to arid climates (AAC) and the use of varieties resistant to fungal diseases (PIWIs).

Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Muscat of Alexandria is one of the oldest cultivars still existing, globally recognized for its distinctive aroma, and the primary grape variety cultivated in the Greek Island of Lemnos, yielding various white wines with designated origins.

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.