terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 An alternative for reducing calcium in wine and lowering the risk of insoluble salt formation

An alternative for reducing calcium in wine and lowering the risk of insoluble salt formation

Abstract

Wine minerals, including calcium, derive mainly from grape berry extraction, but they could also arise from winemaking additives, processing aids, and other sources [1]. Wine calcium concentration can vary widely (7-310 mg/L [1]), and contents above 60 mg/L for reds and 70-80 mg/L for whites and rose have been linked with elevated risk of calcium tartrate instability [2-3]. The formation of calcium tartrate does not respond to treatments involving low temperatures [1,3], and traditional protective colloids have been found to be either ineffective or to produce inconsistent results [4-5]. Instead, recent research on algae-derived polysaccharides suggests that they should be further studied as potentially effective solutions for calcium tartrate instability [5-6]. In this study, the use of alginic acid sodium salt is proposed as an aid capable of partially removing calcium from wines, thus reducing the risks of calcium tartrate precipitation. So far, alginates have been studied as immobilization matrices for yeast or bacteria during wine production [7-8], but no studies appear to have evaluated sodium alginate for tartrate stability. Therefore, the dose of alginate, contact time, and wine pH were preliminary tested, followed by a series of trials in which white, rosé, and red wines were treated under the optimized conditions. Calcium content was analyzed colorimetrically and with atomic absorption spectroscopy [9], tartrate stability was checked with the method of Abguéguen and Boulton [10], and the wine’s general composition (e.g., pH, tartaric acid, free SO2, phenolics, etc.) was characterized with various methods. Depending on the treatment conditions used, calcium concentration reductions ranging from 5 and 25% were observed, leading to enhanced calcium tartrate stability in the samples with the greatest calcium removal, while other compositional parameters analyzed remain constant or showed small variations. The study confirms that this approach effectively reduces calcium levels and potentially minimizes the formation of insoluble salts in wine.

Funding

This research was funded by ANID Chile, thought FONDECYT grant 1231484.

References

[1] Waterhouse, A.L., Sacks, G.L., Jeffery, D.W. (2024). Understanding wine chemistry. John Wiley & Sons.

[2] Rankine B.C. (1989). Making Good Wine-A Manual of Winemaking Practice for Australia e New Zealand. Sun Books.

[3] Ribéreau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D. (2006). Handbook of Enology: The Chemistry of Wine Stabilization and Treatments. John Wiley & Sons.

[4] Cisterna-Castillo, M., Covarrubias, J.I., Medel-Marabolí, M., Peña-Neira, A., Gil i Cortiella. M. (2024). Foods, 13(19), 3065.

[5] Cosme, F., Filipe-Ribeiro, L., Coixão, A., Bezerra, M., Nunes, F.M. (2024). Foods, 13(12), 1880

[6] Fioschi, G., Prezioso, I., Sanarica, L., Pagano, R., Bettini, S., Paradiso, V.M. (2024). Food Hydrocolloids, 157, 110403.

[7] Daria Fumi, M., Trioli, G., Colagrande, O. (1987). Biotechnology Letters, 9, 339–342.

[8] Moreno-García, J., García-Martínez, T., Mauricio, J.C., Moreno, J. (2018). Frontiers in Microbiology, 9.

[9] Baluja-Santos, C., Gonzalez-Portal, A., Bermejo-Martinez, F. (1984). Analyst, 109(7):797-808

[10] Abguéguen, O., Boulton, R.B. (1993). American Journal of Enology & Viticulture, 44:65-75.

Publication date: June 4, 2025

Type: Poster

Authors

V. Felipe Laurie1,*, Bárbara Hormazabal1, Ricardo I. Castro2

1 Facultad de Ciencias Agrarias, Universidad de Talca, Chile
2 Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Talca, Chile

Contact the author*

Keywords

calcium, tartrate, stability, alginic acid

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Comparison of the aroma profile in total and partial dealcoholisation of white and red wines by reverse osmosis

The increasing demand for low-alcohol and non-alcoholic wines has led to the development of advanced dealcoholisation techniques aimed at preserving wine quality while reducing ethanol content. Reverse osmosis is one of the most widely used membrane-based processes for the selective removal of ethanol [1].

Study of Malvasia di Candia Aromatica shelf-life: effect of time and temperature on aroma compounds through an HS-SPME GCxGC-Ms approach

Young white wines should be consumed within a short time after bottling to avoid loss of their fresh, fruity attributes. Shelf-life of white wines can be extended if they are stored under suitable conditions of time and temperature prior to consumption.

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.

Photo-oxidative stress and light-struck defect in Corvina rosé wines: influence of yeast nutritional strategies

Light exposure is one of the major factors affecting the sensory quality of rosé wines and resulting in the light-struck fault.

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].