terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Development of an analytical method for the quantification of compounds responsible for the green character of wines: influence of ripeness on their levels

Development of an analytical method for the quantification of compounds responsible for the green character of wines: influence of ripeness on their levels

Abstract

Red wines can sometimes exhibit undesirable green, herbaceous, and vegetative aromas, negatively impacting their sensory profile and consumer acceptance. While certain grape varieties, such as Cabernet Sauvignon, are known for their green pepper notes due to the presence of pyrazines, these aromas are increasingly appearing in non-pyrazinic grape varieties with each vintage. This phenomenon may be linked to climate change and winemaking decisions aimed at avoiding excessively high alcohol levels. Beyond pyrazines, some studies have associated these green notes with the presence of specific carbonyl compounds [1, 2]. Traditionally, due to their poor chromatographic and spectrometric properties, these compounds have been analyzed using derivatizing agents [3], which require tedious analytical procedures. Furthermore, these methods shorten the operational lifetime of chromatographic columns. To address this, the objective of this work was to develop an analytical method to quantify carbonyl compounds while avoiding any derivatization steps. The proposed method includes a first extraction step using solid-phase extraction (SPE) prior to injection into a two-dimensional gas chromatographic system coupled with a mass spectrometer. Two different strategies for extracting the compounds were studied: deposition of 100 µL into Tenax tubes or the use of stir bar sorptive extraction (SBSE). Several parameters have been optimized, including breakthrough volume, elution conditions, solvent purge with Tenax tubes, and extraction conditions with SBSE. Good repeatability values, around 10% relative standard deviation, were found with both strategies. However, the repeatability worsened with the repeated use of the same Tenax tubes. This issue, along with the fact that better detection limits were achieved with SBSE, led to the decision to analyze real wine samples exclusively with this last strategy. Several wines made from the same grapes harvested at different ripeness levels were analyzed to study the evolution of carbonyl compounds with ripeness.

References

[1] Arias-Pérez, I., Sáenz-Navajas, M. P., de-la-Fuente-Blanco, A., Ferreira, V., & Escudero, A. (2021). Food Chemistry, 361, 130081.

[2] Mozzon, M., Savini, S., Boselli, E., & Thorngate, J. H. (2016). Italian Journal of Food Science, 28(2), 190–207.

[3] Zapata, J., Mateo-Vivaracho, L., Cacho, J., & Ferreira, V. (2010). Analytica Chimica Acta, 660(1–2), 197–205.

Publication date: June 4, 2025

Type: Poster

Authors

Ignacio Ontañón1,*, María Buñuel1, Vicente Ferreira1, Mónica Bueno1

1 Laboratorio de Análisis del Aroma y Enología. Departamento de Química Analítica. Facultad de Ciencias. Instituto Agroalimentario de Aragón –IA2- (Universidad de Zaragoza-CITA). C/ Pedro Cerbuna, 12. 50009. Zaragoza, Spain

Contact the author*

Keywords

gas chromatography, carbonyl compounds, green character, ripeness

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Experiments with the use of stems in Pinot noir winemaking

Vinification trials were carried out between 2018 and 2021 in the experimental winery at Laimburg Research Centre, Alto Adige, to test the effect of grape stem inclusion during fermentation of Pinot Noir.

Unveiling Metschnikowia spp.: mechanisms and impacts of bioprotection in winemaking

Bioprotection, leveraging beneficial microorganisms, has emerged as a sustainable approach to modern winemaking, minimizing reliance on chemical preservatives like as sulfur dioxide (SO₂).

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.

Unveiling the secrets of catechin: insights from NMR spectroscopy

Catechins, a class of flavonoids found in foods and beverages such as wine and tea, exhibit potent antioxidant properties that contribute to various health benefits.[1]

Towards faultless Grenache wines: impact of climate and maturity

Climate change is affecting wine production and inducing significant variability in wine composition between vintages.