Terroir 2012 banner
IVES 9 IVES Conference Series 9 Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Abstract

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys (position and number of soil sampling) to obtain a very precise final soil map. Since 2007, Tutiac Winegrowers (Vignerons de Tutiac, Bordeaux) have decided to map all their vineyards (over 4000 hectares) with this technology. Maps are used by the Winery to provide advices more suited to the terroir: grass cover, fertilization, replanting (grape variety/rootstock), grape selection and to define the potentiality of each plot regarding market expectations. However, because of logistic reasons, the Tutiac Winery is not able to use the very high-resolution of the maps for within-field valorization (selective harvest). But, intra-block information of resistivity maps, crossed with complementary measures, can be used in a different way, in particular to cut down use of phytosanitary treatment. This paper presents the GIPI project which plans to vary the rate of crop inputs inside the field. Agronomic (input data, abacus) and technological aspects (software, direct injection sprayer) will be described through an example of a vineyard (25 hectares) where many measurements (resistivity, pedology, NDVI…) have been carried out.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Xavier CASSASSOLLES (1), Jérôme OSSAR (2), Julien-Mathieu MARCISET (2), Michel DABAS (1)

(1) GEOCARTA, 5 rue de la Banque 75002 Paris – France
(2) VIGNERONS DE TUTIAC – La Cafourche 33860 Marcillac – France

Contact the author

Keywords

soil electrical resistivity, terroir, vigour, precision viticulture, direct injection, crop inputs

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

From vineyard to a glass of wine: the effect of abscisic acid application on mouhtaro, a rare autochthonous variety of greece

In a context of a sustainable viticulture, a new uprising strategy to improve grape and wine composition (or quality) is the exogenous application of plant activators(Gil-Muñoz et al., 2017)

Modulation of berry composition by different vineyard management practices

High concentration of sugars in grapes and alcohol in wines is one of the consequences of climate change on viticulture production in several wine-growing regions. In order to investigate the possibilities of adaptation of vineyard management practices aimed to reduce the accumulation of sugar during the maturation phase without reducing the accumulation of anthocyanins in grapes, a study with severe shoot trimming, shoot thinning, cluster thinning and date of harvest was conducted on Merlot variety in Istria region (Croatia), under the Mediterranean climate. Four factors which may affect grape maturation and its composition at harvest were investigated in a two-years experiment; severe shoot trimming applied at veraison when >80% of berries changed colour (in comparison to untreated control), shoot thinning (0 and 30%), cluster thinning (0 and 30%), and the date of harvest (early and standard harvest dates). Shoot thinning had no significant impact on berry composition, despite the obtained reduction in yield per vine. Lower Brix in grapes were obtained with earlier harvest date and if no cluster thinning was applied, although at the same time a reduction in the concentration of anthocyanins in berries was observed in these treatments. On the other hand, if severe shoot trimming was applied when >80% of berries changed colour, a reduction of Brix was obtained without a negative impact on berry anthocyanins concentration. We conclude that in cases when undesirably high sugar concentrations at harvest are expected, severe shoot trimming at 80% veraison may effectively be used in order to obtain moderate sugar concentration in berries together with the adequate phenolic composition.

Exploring the dynamic between yeast mannoproteins structure and wine stability

Mannoproteins are macromolecules found on the surface of yeast cells, composed of hyperbranched polysaccharide negatively charged chains by mannosyl-phosphate groups, fixed to a protein core. during the alcoholic fermentation and aging on lees, these mannoproteins are released from the yeast cell wall and become the main yeast-sourced polysaccharide in wine. due to their techno-functional properties, commercial preparations of mannoproteins can be used as additives to better assure tartaric and protein stability.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

Oak wood barrel tannin potential builds white wines oxidative stability and contributes to wine metabolomics fingerprint

Considerable advances have been made in the chemical characterization of wine metabolites through its holistic study using both targeted and untargeted metabolomics approach. The metabolite pool is subject to an intense molecular dialogue which reinforces the wine complexity even after bottling.