Terroir 2012 banner
IVES 9 IVES Conference Series 9 Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Abstract

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers. Wine growers have to face new environmental challenges, both through new regulations but also for communication and marketing. Indeed customers and consumers are more and more demanding “green” products, and this also applies to wine. Among the different environmental issues (reduction of pollution, pesticides …) often seen as negative constraints, biodiversity management appears as a positive action, and thus a motivating aspect to work on.

Such collective projects are easier to set up if administrative or “territorial” limits such as Appellation d’Origine Contrôlée are respected. Many projects are currently starting or ongoing in France and Europe. If the content and goals of these projects are often based on conservation actions and biodiversity monitoring, it appears that no standard strategy exists to apply these projects, largely depending on the local context and organizations in charge of it.

A sound technical (agronomic) knowledge is needed to raise interest from farmers (pure ecological reasons are less adapted to this public), and financial assistance seems to be as well a key factor to obtain significant results. The Life+ BioDiVine project aims to reintroduce ecological infrastructures in intensive viticulture areas. Its success is strongly linked to involvement of local stakeholders as wine-boards and syndicates. In fact, it aims to be a project based on a “bottom-up” strategy (demand, motivation and steering committee through the land owners, wine growers) and associated to other local stakeholders. Applied on 7 demonstration sites in France, Spain and Portugal, it gives, apart from an opportunity for maintaining biodiversity, a bigger picture of nature conservation strategies in the agricultural context.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Josépha GUENSER (1), Maarten van HELDEN (2), Benjamin PORTE (3), Joël ROCHARD (3)

(1) Univ. Bordeaux, ISVV, Vitinnov, 1 cours du Général de Gaulle, 33170 Gradignan
(2) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, 1 cours du Général de Gaulle, 33170 Gradignan
(3) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan

Contact the author

Keywords

Common Biodiversity, Landscape management, Territorial development, Conservation actions, Life + BioDiVine

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation.

Zoning of potential landscape and environment potential of the «Appellation d’Origine Contrôlée Costières de Nîmes»

The Union defence of the “appellation Costières de Nîmes” hired a reflection on the future of its territory production in the interests of preservation and enhancement.

Aroma characterization of aged cognac spirits: contribution of volatile terpenoid compounds

Cognac spirit aromas result from the presence of a wide variety of volatile odorous compounds associated with the modalities of distilled spirit elaboration and during aging. Indeed, these odorous compounds play an essential role in the finesse and complexity of the aged Cognac.

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.