Terroir 2010 banner
IVES 9 IVES Conference Series 9 Valutazione dell’equilibrio vegeto-produttivo con metodiche di proximal sensing

Valutazione dell’equilibrio vegeto-produttivo con metodiche di proximal sensing

Abstract

Nel biennio 2008-2009, nell’ambito di un progetto multidisciplinare coordinato e finanziato dal Consorzio Tuscania, 4 vigneti in differenti zone della Toscana sono stati monitorati con strumenti di proximal sensing al fine di valutare la variabilità riscontrabile e ottenere delle indicazioni sulle risposte vegetative delle piante e quanti-qualitative delle produzioni. La creazione di mappe di NDVI (uno degli indici di vegetazione più comunemente utilizzati) e di spessore delle chiome (CT, derivato dalla lettura dei sensori ad ultrasuoni), ha permesso di evidenziare nette differenze tra i vigneti studiati e all’interno dei singoli appezzamenti, oltre ad una forte influenza temporale sulle caratteristiche delle chiome; tali evidenze sono state confermate da un’analisi della varianza multivariata. I dati rilevati sono stati correlati con alcuni indici comunemente utilizzati per la valutazione vegeto-produttiva delle piante ottenendo delle correlazioni significative, a conferma della validità dei rilievi effettuati e del loro possibile utilizzo come metodo di monitoraggio della situazione esistente in vigneto e di supporto nei processi decisionali

English version: In 2008, collaborating with Tuscania Consortium, Ibimet of Florence and IASMA, a research was started with the aim of understanding and monitoring existing variability in vineyards and, basing on it, evaluating agronomical practices useful for qualitative and quantitative responses optimization. With this purpose, some experimental parcels were chosen in 4 different Sangiovese and Cabernet S. vineyards placed in 3 areas of Tuscany. Parcels were made by the use of different canopy management techniques in various vigour zones. In established periods (fruit setting, veraison and before technological maturity) some instrumental records were made, using ATV mounted optical and ultrasonic sensors; at the same time, indirect measurements of leaf surface and a Point Quadrat were performed. Statistical analysis allowed to validate instrumental relives and to underline the capability of the system of surveying both spatial and temporal variability both an artificial one, made by agronomical practices.

DOI:

Publication date: October 8, 2020

Issue: Terroir 2010

Type: Article

Authors

P. Carnevali (1), L. Brancadoro (1), S. Di Blasi (2), M. Pieri (2)

(1) Dipartimento di Produzione Vegetale, Università degli Studi di Milano. Via Celoria 2, Milano, Italia
(2) Società Consortile Tuscania s.r.l. Piazza Strozzi 1, Firenze, Italia

Contact the author

Keywords

Proximal Sensing – GreenSeeker – Ultrasounds – Vegetative expression

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

Enological potential of red grapes: cultivars and geographic origin of vineyards

The study of technologic and phenolic maturation is very efficient to determinate quality potential of red grapes cultivars and clones under different maturity levels or geographic origins

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential.

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.

Generation of radicals in wine by cavitation and study of their interaction with metals, phenols and carboxylic acids

High-power ultrasounds have been related to an accelerated aging of wines, an effect that has been associated to the formation of radical species caused by the cavitation phenomenon [1]. This phenomenon consists of the formation of bubbles in the liquid medium that, when they collapse, cause high-pressure hot spots and temperatures of up to 4800 k [2], notably increasing the reactivity in the medium.