Terroir 2020 banner
IVES 9 IVES Conference Series 9 Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Abstract

Aim: Climate modelling in viticulture introduced new challenges such as high spatio-temporal monitoring and the use of dependable time series and robustness modelling methods. Land surface temperature (LST) is widely used and particularly MODIS thermal satellite images due to their high temporal resolution (four images per day). However, this data is not completely adapted to regional scale with its medium spatial resolution (1-km). Downscaling methods can improve spatial resolution using machine learning algorithms implementing multiple predictors as topographical variables and vegetation indices. In the last decades, classical bioclimatic temperature-based indices showed a specific spatial distribution depending on topographical variables and at once a significantly non-correlation with vegetation growing trend.  

Methods and Results: In the current study, an assessment of SVM Machine learning method was used to downscaling daily LST using topographical variables and vegetation indices as predictors at multiple spatial resolution. The aims of this study were to (1) evaluate daily LST time series through 2012-2018 period, (2) assess the impact of topographical variables and evolution of vegetation indices during vegetative season and (3) calculation of bioclimatic indices on the wine-growing area of the Gironde The dataset included: 1) daily time series of MODIS LST at 1-km (MOD11A1 and MYD11A1) and 2) topographical variables derived from Digital Elevation Model at 500 m (GMTED10). The first step was the pre-processing and reconstruction of time series. The second step was the downscaling of LST using SVM with topographical variables as predictors. For each day, a model was calibrated and validated to predict daily LST at finer spatial scale. The third step was the calculation of bioclimatic indices (Winkler and Huglin). The methodology was applied for the fourth LST MODIS products acquired at different times. For example, for the 2012 wine growing season Huglin index and Winkler index were calculated with the daily predicted LST (without vegetation indices as predictors but only topographical variables) on the Gironde area and have a globally similar spatial structure. The lowest values (≈ 1900°C for Huglin and 1340°C for Winkler) are concentrated on the coastline to the west and south of the Gironde. The highest index values (> 2000°C for Huglin and > 1700°C for Winkler) are located from the centre of the Gironde to the north-east. These warmer sectors are concentrated in the valley bottoms of the Dordogne and Gironde with higher values in the south of Libourne. LST predictions should be downscaled for the whole period (2012-2019) and the second experiment of the downscaling method includes vegetation indices as predictors.

Conclusion: 

The advantage of LST is their temporal and spatial covers in all the areas. However, data availability and bias must be taken into account and minimized. 

Significance and Impact of the Study:  At the scale of Gironde region, this downscaling method has been tested for the first time with MODIS Land Surface Temperature derived from thermal satellite images in a wine-growing context.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gwenaël Morin1*, Renan Le Roux2, Pierre-Gilles Lemasle1 and Hervé Quénol1

1LETG-Rennes, UMR 6554 CNRS – Université Rennes 2, Place du Recteur Henri Le Moal, Rennes – France 
2CIRAD, Forêts et Sociétés, F-34398 Montpellier, France

Contact the author

Keywords

Climate modelling, topographical downscaling, thermal satellite imagery, bioclimatic indices, Gironde

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Terroir factors causing sensory and chemical variation in Riesling wines

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments.

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.

Advancement of grape maturity – comparison between contrasting varieties and regions

Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier
vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016).

The current state and prospects for the development of viticulture and winemaking in Greece

Viticulture in Greece is the oldest, but in recent years there has been a reduction of areas intended for the production of wine products. The article contains data on viticulture in Greece. Over time, the land of Greek vineyards is fluctuating. There is a trend towards a decrease in areas in connection with the quota of products from the EU.

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

In viticulture, the challenges of local climate modelling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed: