Terroir 2020 banner
IVES 9 IVES Conference Series 9 Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Abstract

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in vineyards that do not receive irrigation. We measured juice δ13C at harvest across multiple vineyards with the aim to discriminate sub-regions based on soil water availability due to variation in climate, soil and management (especially supplementary irrigation). We explored the relationship between δ13C and pruning mass, yield and fruit parameters important for wine quality.

Methods and Results: The study was conducted in 2019 in irrigated Shiraz vineyards spread across six sub-regions in the Barossa Valley, SA. A total of 63 samples collected at harvest (approx. 25⁰ Brix) were subject to δ13C analysis, this included three samples from each of 21 vineyards. Yield, pruning mass and berry maturity (total soluble solids, titratable acidity and pH) and quality parameters (total tannins, anthocyanins and phenolics) were assessed. Carbon isotope composition of the grape sugars was measured on autoclaved berry juice using a continuous flow isotope ratio mass spectrometer. δ13C discriminated between sub-regions and within vineyards. Vineyards from sub-regions, Eden Valley, Central and Northern Grounds had lower δ13C than vineyards from the Western Ridge and Eastern Edge, with the Southern Grounds. Similarly, zones within a vineyard with lower plant biomass, as indicated by PCD imagery, showed lower δ13C. A significant relationship was observed between δ13C and yield (r = -0.72***), pruning mass (r = -0.54**), anthocyanins (r = 0.65**) and total phenolics (r = 0.61**). Higher water stress (< δ13C) during the season was associated with a lower yield, lower pruning mass but with higher total anthocyanins and phenolics. No significant relationships between δ13C and other berry traits (including total tannins) were observed.

Conclusions: 

δ13C is a useful method to integrate and distinguish components of terroir that affect vine productivity and some fruit quality parameters which remains sound even when the vines receive irrigation. 

Significance and Impact of the Study: This study shows the potential use of δ13C to discriminate between blocks with different moisture availability that may induce changes in yield and some aspects of fruit quality. δ13C may emerge as a proxy for terroir in zoning studies of irrigated vines, but further validation is needed using cluster analysis that integrates soil, climate and fruit composition geospatially across multiple seasons.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Marcos Bonada1, Cassandra Collins2, Paul Petrie1

1South Australian Research and Development Institute, Urrbrae, Australia 2The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, Glen Osmond, Australia

Keywords

Carbon isotope discrimination, water availability, grapevine growth, fruit composition, terroir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.

Delaying irrigation initiation linearly reduces yield with little impact on maturity in Pinot noir

When to initiate irrigation is a critical annual management decision that has cascading effects on grapevine productivity and wine quality in the context of climate change. A multi-site trial was begun in 2021 to optimize irrigation initiation timing using midday stem water potential (ψstem) thresholds characterized as departures from non-stressed baseline ψstemvalues (Δψstem). Plant material, vine and row spacing, and trellising systems were concomitant among sites, while vine age, soil type, and pruning systems varied. Five target Δψstem thresholds were arranged in an RCBD and replicated eight times at each site: 0.2, 0.4, 0.6, 0.8, and 1.0 MPa (T1, T2, T3, T4, and T5, respectively). When thresholds were reached, plots were irrigated weekly at 70% ETc. Yield components and berry composition were quantified at harvest. To better generalize inferences across sites, data were analyzed by ANOVA using a mixed model including site as a random factor. Across sites, irrigation was initiated at Δψstem = 0.24, 0.50, 0.65, 0.93, and 0.98 MPa for T1, T2, T3, T4, and T5, respectively. Consistent significant negative linear trends were found for several key yield and berry composition variables. Yield decreased by 12.9, 15.9, 19.5, and 27.4% for T2, T3, T4, and T5, respectively, compared to T1 (p < 0.0001) across sites that were driven by similarly linear reductions in berry weight (p < 0.0001). Comparatively, berry composition varied little among treatments. Juice total soluble solids decreased linearly from T1 to T5 – though only ranged 0.9 Brix (p = 0.012). Because producers are paid by the ton, and contracts simply stipulate a target maturity level, first-year results suggest that there is no economic incentive to induce moderate water deficits before irrigation initiation, regardless of vineyard site. Subsequent years will further elucidate the carryover effects of delaying irrigation initiation on productivity over the long term.

Chemical and sensory evaluation of Bordeaux wines (Cabernet sauvignon and Merlot) and correlation with wine age

This study was carried out on 24 vintages of Cabernet sauvignon and on 7 vintages of Merlot produced by two different Bordeaux growing areas. Proanthocyanidin monomers and oligomers, and several parameters of the proanthocyanidin fraction were analytically assessed.

Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Ground water in the interior valleys of California is contaminated with nitrates derived from agricultural activities, primarily the over-fertilization of crops.

Aroma characterization of aged cognac spirits: contribution of volatile terpenoid compounds

Cognac spirit aromas result from the presence of a wide variety of volatile odorous compounds associated with the modalities of distilled spirit elaboration and during aging. Indeed, these odorous compounds play an essential role in the finesse and complexity of the aged Cognac.