Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 In search of the taste of terroir – a challenge for sensory science

In search of the taste of terroir – a challenge for sensory science

Abstract

The definition of terroir has evolved throughout history, from something clearly negative in the XVIth-XVIIIth century to a complex multi-parametric construct with positive connotations but also with many scientific unknowns. Terroir has always been linked more or less explicitly to the sensory properties of the resulting products.

Wine consumers have little access to objective terroir information and even if they had, it would be very difficult for them to interpret in terms of wine quality. In Europe, the proxy for terroir is the Protected Designations of Origin (PDO) system, which is what consumers have come to know. According to INAO “It is the notion of soil (terroir) that is the basis of the concept of Appellations d’origine” and results in a product with original and typical features.

From a cognitive point of view, terroir-based and other wine sensory categories have been approached from prototype categorization theory, according to which categories are stored in long-term memory as prototypes. The prototype would be abstracted from the instances of the category during previous tastings and shared between experts. The prototype is highly typical of the category and serves as reference to categorize new items. Such categories are based on family resemblance (instances from the same category share more features then instances from different categories) and are organized according to a typicality gradient.

The main sensory methods used to explore the structure of wine sensory categories are typically ratings and sorting tasks combined with descriptive analysis. The sensory studies dealing with PDO-based categories are scarce. Globally, the results suggest that PDO-based categories are quite difficult to distinguish sensorially. A possible explanation is that high within-category variability makes it difficult to pinpoint a prototype and yields quite fuzzy borders.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Jordi Ballester1,2*

Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne – Franche-Comté, F-21000 Dijon, France.
IUVV Jules Guyot, Université de Bourgogne, 1 rue Claude Ladrey, 21078 Dijon, France.

Contact the author

Keywords

Terroir, PDO, typicality, expert panel, sensory concept

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Projected impacts of climate change on viticulture over France wine-regions using downscalled CMIP6 multi-model data

Winegrape is a crop for which the quality and the identity of the final product depends strongly on the
climatic conditions of the year. By impacting production systems and the way in which wines are
developed, climate change represents a major challenge for the wine industry (Ollat et al., 2021).

DNA-Free genome editing confers disease resistance in grapevine

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches.

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Defining gene regulation and co-regulation at single cell resolution in grapevine

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.