Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Abstract

AIM: Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

METHODS: The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5 and 5.5 MPa) and two temperature regimes (with and without cooling) on aroma profile of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The reverse osmosis process was conducted on a plate-and-frame membrane filter Alfa Laval LabUnit M20, equipped with 6 composite RO98pHt membranes. The aroma compounds in initial wines and obtained retentates were analyzed on gas chromatograph with mass spectrometer. The solid-phase microextraction (SPME) method was used for sampling.

RESULTS: In the initial wines and their RO retentates, 45 aroma compounds were identified and divided into six groups: acids, alcohols, terpenes, carbonyl compounds, esters and volatile phenols. A certain loss of total aroma compounds was observed in conventional and ecological wine retentates, comparing to the corresponding initial wine. Higher working pressures (4.5 and 5.5 MPa) and the regime with cooling resulted in higher retention of total aroma compounds than the opposite processing parameters. Individual compounds retention depended also on their chemical properties and their interactions with the membrane surface. Reverse osmosis membranes proved to be highly permeable for acetic acid or undesirable 4-ethylphenol and 4-ethylguaiacol that made them applicable for their correction or removal. Initial wine composition influenced the retention of aroma compounds during reverse osmosis of red wines. Slightly higher retention of total acids, alcohols and terpenes was observed in conventional wine retentates than in the ecological one. The retention of carbonyl compounds, esters and volatile phenols was slightly higher during concentration of ecological wine than the conventional wine.

CONCLUSIONS:

The aroma profile of the wine retentate depends on initial wine aroma profile and applied processing parameters during reverse osmosis process (pressure, temperature, membrane type).

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ivana Ivić, Mirela, KOPJAR, Dubravko, PICHLER, W. Ina, ĆORKOVIĆ, Anita, PICHLER, 

Faculty of Food Technology in Osijek, Croatia, Water Supply—Osijek, Croatia  

Contact the author

Keywords

conventional and ecological cabernet sauvignon, reverse osmosis, aroma compounds, processing parameters, retention

Citation

Related articles…

Copper reduction strategy for sangiovese in organic viticulture

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently.

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint.

Effect of terroir and winemaking protocol on the chemical and sensory profiles of Pinot Blanc wine

Wine research in the past years has mainly been focused on laboratory scale due to the possibility of controlling winemaking variables. Conversely, studies on wine quality in relation to the winemaking variables at the winery scale may be able to better account for the actual challenges encountered during wine production. Winemaking problems are recently arising from progressive changes in environmental conditions in relation to the terroir. It is important to realize that each wine region may have specific winemaking protocols and that winemakers often base their decisions on subjective, emotional, and empirical opinions. Due to all the above-mentioned issues, taking the correct decision in winemaking to achieve the desired goals may become even more challenging.

Metodología para la zonificación de áreas vitícolas: aplicación en un area modelo del Penedés

Se propone una metodología para la zonificación del viñedo, a partir de las características climáticas, edáficas y geomorfológicas, en una área de 3700 ha del Penedés