Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Abstract

AIM: Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

METHODS: The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5 and 5.5 MPa) and two temperature regimes (with and without cooling) on aroma profile of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The reverse osmosis process was conducted on a plate-and-frame membrane filter Alfa Laval LabUnit M20, equipped with 6 composite RO98pHt membranes. The aroma compounds in initial wines and obtained retentates were analyzed on gas chromatograph with mass spectrometer. The solid-phase microextraction (SPME) method was used for sampling.

RESULTS: In the initial wines and their RO retentates, 45 aroma compounds were identified and divided into six groups: acids, alcohols, terpenes, carbonyl compounds, esters and volatile phenols. A certain loss of total aroma compounds was observed in conventional and ecological wine retentates, comparing to the corresponding initial wine. Higher working pressures (4.5 and 5.5 MPa) and the regime with cooling resulted in higher retention of total aroma compounds than the opposite processing parameters. Individual compounds retention depended also on their chemical properties and their interactions with the membrane surface. Reverse osmosis membranes proved to be highly permeable for acetic acid or undesirable 4-ethylphenol and 4-ethylguaiacol that made them applicable for their correction or removal. Initial wine composition influenced the retention of aroma compounds during reverse osmosis of red wines. Slightly higher retention of total acids, alcohols and terpenes was observed in conventional wine retentates than in the ecological one. The retention of carbonyl compounds, esters and volatile phenols was slightly higher during concentration of ecological wine than the conventional wine.

CONCLUSIONS:

The aroma profile of the wine retentate depends on initial wine aroma profile and applied processing parameters during reverse osmosis process (pressure, temperature, membrane type).

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ivana Ivić, Mirela, KOPJAR, Dubravko, PICHLER, W. Ina, ĆORKOVIĆ, Anita, PICHLER, 

Faculty of Food Technology in Osijek, Croatia, Water Supply—Osijek, Croatia  

Contact the author

Keywords

conventional and ecological cabernet sauvignon, reverse osmosis, aroma compounds, processing parameters, retention

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.