Terroir 2020 banner
IVES 9 IVES Conference Series 9 Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Abstract

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.

Methods and Results: Additionally, to obtaining various colour parameters, the A-TEEM technique enables the “fingerprint” of wine samples to be attained in response to the presence of fluorophoric compounds. This is accomplished by recording a three-dimensional excitation-emission matrix (EEM) over multiple excitation and emission wavelengths, which can then be analysed using multivariate statistical modelling to classify wines. Shiraz wine samples (n = 134) from six different GIs of South Australia (Barossa Valley, Clare Valley, Eden Valley, Langhorne Creek, McLaren Vale, and Riverland) were analysed and absorbance spectra, hue, intensity, CIE L*a*b, CIE 1931, and EEMs were recorded for each sample. EEM data were evaluated according to the cross-validation model built with extreme gradient boost discriminant analysis (XGBDA) using score probability to assess the accuracy of classification according to the region of origin. Preliminary results have shown a high prediction ability and the data extracted from A-TEEM could be used to investigate phenolics as potential chemical markers that may provide effective regional discrimination.

Conclusions: 

The molecular fingerprinting capability and sensitivity of EEM in conjunction with multivariate statistical analysis of the fluorescence data using the XGBDA algorithm provided sufficient chemical/spectral information to facilitate accurate classification of Shiraz wines according to the region of origin. A-TEEM coupled with XGBDA modelling appears to be a promising tool for wine authentication according to its geographical origin.

Significance and Impact of the Study: Having tangible evidence that Australian fine wines may be discriminated on the basis of geographical origin, will help to improve the international reputation of Australian wines and increase global competitiveness. Understanding of the important regional chemical parameters would allow grape growers and winemakers to optimise their viticultural and winemaking practices to preserve these characteristics of their terroir. Moreover, verifying the content in the bottle according to the label descriptions with a rapid method, has the potential to verify product provenance and counteract fraud in cases where wine of inferior/questionable quality or contaminated wine is presented as originating from Australia.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

R.K.R. Ranaweeraa, A. M. Gilmoreb, D.L. Caponea, c, S.E.P. Bastiana,c, D.W Jefferya, c*

aDepartment of Wine and Food Science, The University of Adelaide, South Australia, Australia
bHORIBA Instruments Inc., 20 Knightsbridge Rd., Piscataway, NJ 08854, United States
cAustralian Research Council Training Centre for Innovative Wine Production, The University of Adelaide

Contact the author

Keywords

Geographical origin, chemometrics, modelling, excitation-emission matrix

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Grape development revisited through the single-berry metabolomic clock paradigm

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived.

Pinot noir: an endemic or a flexible variety?

Pinot noir has its historical roots in Burgundy and is generally considered as an endemic vine variety which means that its adaptation is very specific to this environment

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.