Terroir 2020 banner
IVES 9 IVES Conference Series 9 Selecting varieties best adapted to current and future climate conditions based on ripening traits

Selecting varieties best adapted to current and future climate conditions based on ripening traits

Abstract

Aim: The aim of this study was to quantify key berry sugar accumulation traits and characterize their plasticity in response to climate variation from data collected from different cultivars over seven years from an experimental vineyard.

Methods and Results: Berry samples were collected weekly from different Vitis Vinifera (L.) cultivars at four replicate locations within a common-garden randomized complete block design from 2012-2018 in Bordeaux, France. A logistic model was parameterized to the sugar accumulation data and ripening traits were extracted. The variation in sugar accumulation traits were well explained by cultivar, year, and their interaction, highlighting the relative roles of genetic variation and phenotypic plasticity. Sugar accumulation traits themselves were affected by antecedent and concurrent climate factors such as temperature, photosynthetically active radiation, and vine water status, whether before, or after mid-véraison. In addition, other traits such as berry weight at mid-véraison, and date of mid-véraison had an important influence on sugar accumulation traits. Further, the relative importance of these factors varied significantly by cultivar. More research is needed to unravel the exact mechanisms underlying the differential genotypic responses of traits to these factors.

Conclusions: 

The variations in sugar accumulation traits were well explained by cultivar, year, and their interaction, highlighting the relative roles of genetic variation, climate factors, and phenotypic plasticity. Sugar accumulation traits were found to be affected by antecedent and concurrent climate factors both before and after mid-véraison. The relative importance of these factors varied significantly by cultivar. In this study we focused only on sugar accumulation traits. Sugar is, however, only one of many determinants for grape cultivar suitability in wine regions. Other traits include, but are not limited to, water use efficiency, photosynthetic capacity, yield, and berry composition. 

Significance and Impact of the Study: Climate change induces excessively high sugar levels in grapes, resulting in wines with increased alcohol content. It also results in earlier ripening, moving the ripening period to a part of the season where climatic conditions are not optimum for producing high quality wines. Variability among cultivars is a precious resource to adapt viticulture when environments change. This study highlighted the relative roles of genetic variation and phenotypic plasticity to environmental conditions in the variation of sugar accumulation traits. Moreover, it shows that a multi-trait approach is required to study wine grape ripening to select varieties in a context of global change.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Bruno Suter1, Agnès Destrac-Irvine1, Mark Gowdy1, Zhanwu Dai2, Cornelis van Leeuwen1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China

Contact the author

Keywords

Grapevine cultivar, berry sugar accumulation, climate change, phenotypic plasticity, modelling

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

An overview of the impact of clone, environmental factors and viticultural techniques on rotundone concentration in red wines

Rotundone is the main aroma compound responsible for peppery notes in red wine. This positive and very potent molecule has an odor threshold of 8 ng/L in water and 16 ng/L in red wine. It has been detected in several grape varieties with some of the highest concentrations recorded in Syrah, Duras, Tardif and Noiret, an interspecific hybrid grown in the North-East of the USA. If several winemaking practices have been identified to lower rotundone in wine, up to date, no enological solution has proved its efficiency to maximize it. This means that efforts to produce high rotundone wines must be undertaken in vineyards. This work provides practical ways that can be used by winegrowers to modulate rotundone levels in their wines.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

In addition to studies on the edaphic and landscape characteristics of the environment (Dolédec, 1995), the characterization of the physiology of the vine and of parasitism during its vegetative cycle represents an essential component of knowledge and management of the terroirs.

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.

Which heat test can realistically estimate white wine haze risk?

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.