Terroir 2020 banner
IVES 9 IVES Conference Series 9 Water and physiological response to early leaf removal of cv. Verdejo in rainfed conditions, at different times of the day, in the D.O. Rueda (Spain)

Water and physiological response to early leaf removal of cv. Verdejo in rainfed conditions, at different times of the day, in the D.O. Rueda (Spain)

Abstract

Aim: Early leaf removal, generally applied before flowering, is mostly conceived as a technique to control grape yield and improve the health of grapes and focused on the final objective of increasing wine quality.

New knowledge of its possible physiological effects in the cv. Verdejo, in rainfed conditions, should facilitate the understanding of agronomic, vegetative and qualitative behaviour of the vineyard, thus generating more possibilities of adaptation to optimize the grape ripening process.

Methods and Results: Leaf removal was carried out by removing the first eight adult leaves, from the base, on all shoots. The trial was carried out with cv. Verdejo, grafted onto 110R, planted in 2006 and trained on a vertical trellis, in rainfed conditions, in the D.O. Rueda.Throughout the period of 2016-2018, the physiological response of the vines to early leaf removal (before flowering) was studied through measurements of water potential at 7, 9, 11 and 12 hours (solar time) and stomatal conductance, transpiration and net photosynthesis at 9 and 12 hs.

The water potential measured at different times of the day showed no differences between treatments. The values were slightly higher in the control vines sometimes and higher in the leaf plucked vines other times, but more frequently favourable to the control vines in 2017 and 2018, especially in the measurements at 9 and 11 hs. Gas exchange (Gs, E, An) also did not show statistically significant differences between treatments. Some values were slightly favourable to the leaf removal treatment, such as at 9 hs in 2016, and other values were slightly favourable to the control treatment, such as at 12 hs in 2017 and at 9 hs in 2018.

Conclusions:

The results observed in the water potential and in the gas exchange at different times of the day have not generally discriminated between the leaf removal applied at the beginning of flowering and the control treatments.

Significance and Impact of the Study: The agronomic benefit intended with the early leaf removal, generally to lighten the compactness and weight of the bunch, as well as its aeration and luminosity, does not have to be questioned from the water or physiological point of view in the cv. Verdejo on rainfed conditions.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Jesus Yuste* and Daniel Martinez-Porro

Instituto Tecnologico Agrario de Castilla y Leon, Ctra. Burgos km 119, 47071 Valladolid, Spain

Contact the author

Keywords

Grapevine, photosynthesis, stomatal conductance, transpiration, water potential

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

Salubrity of environment and zoning process: first consideration on the radioactivity of vineyard soils

La salubrité du milieu et des aliments intervient de plus en plus lourdement, et souvent négativement, sur la santé de l’homme, aussi bien sur l’individu que sur la société tout entière.

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

The impact of decadal cold waves over Europe on future viticultural practices

A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas.