Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Mannoprotein extracts from wine lees: characterization and impact on wine properties

Mannoprotein extracts from wine lees: characterization and impact on wine properties

Abstract

This study aims at exploiting an undervalued winemaking by-product, wine yeast lees, by developing efficient and food-grade methods for the extraction of yeast glycoproteins. These extracts were then supplemented to wine and their impact on wine properties assessed. White wine lees were produced by fermenting Sauvignon blanc grape juice with S. cerevisiae Uvaferm HPS strain. Three extraction methods were applied on lees using physical (autoclave and sonication) or enzymatic (Glucanex®, an industrial β-glucanases) approaches. Glycoproteins extracts were characterized by SEC-HPLC and SDS-PAGE. After their addition to wine (0.5 g/L), no alteration of wine clarity was detected. The ultrasonication and enzymatic extracts, containing a relatively low amount of glycoproteins, led to a significant decrease in wine protein haze formation upon heat test (-7%). Conversely, the autoclave extract was the richest in glycoproteins and had a positive impact on wine foaming properties, inducing an increase in foam’s maximum height and stability which were 2.6 and 3.6 times higher compared to a model wine. The autoclave extract improved tartrate stability as shown by a decrease in wine conductance (-11%) compared to the untreated wine. Results suggest that white wine lees could be considered a valuable source of glycosylated proteins with potential applications in winemaking. In this context, the autoclave appears as the more promising method in terms of both efficiency and extract’s effectiveness. The proposed food-grade exploitation approach could represent an important tool to improve the environmental and economical sustainability of the wine supply chain.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Alberto De Iseppi1, Andrea Curioni1,2, Giovanna Lomolino1, Matteo Marangon1, Simone Vincenzi1,2 and Benoit Divol3

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020, Legnaro, Padova, Italy
2Centre for Research in Viticulture and Enology (CIRVE), Viale XXVIII Aprile 14, 31015, Conegliano, Italy
3South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Une procédure de mise à jour des zones AOC

In France, one of INAO missions is to delimit the production area of the « Appellations d’origine contrôlées » (AOC). For wine AOC, the delimitation of plots allows for identifying plots of land that respond to technical criteria of the vine location, criteria adapted in every appellation. Some old delimitations AOC are not in adequacy with their territory. Indeed, in spite the existence of a politic aiming to protect production areas AOC, urbanization, road infrastructure or quarries occupy surfaces classified in AOC today.

Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

The aim of this study was to evaluate the evolution of different chemical parameters and sensory impact on red wine during maturation in barrels or with new technologies

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Legal and economic evolution of the Japanese wine industry in the 21st century

Historically bounded by strict regulations with a focus on taxation since the 19th century, the japanese wine industry stands at a crossroads in the 21st century, necessitated by alignment with international standards and opening towards global markets.