Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Alimentary film to reduce cork taint and improve wine organoleptic quality

Alimentary film to reduce cork taint and improve wine organoleptic quality

Abstract

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible. Up to now there is no strategy to eliminate or lessen these unpleasant volatiles from wine. The present research aimed at assessing the efficacy of an alimentary plastic film for this purpose, as well as examining its potential impact on the colour, phenolic, aromatic and sensory attributes of wine.

The film treatment was able to successfully reduce the initial TCA content of the contaminated wines (≥47%, ≥73% and ≥81% after 8h, 24h and 48h of treatment, respectively). Colour was not visually perceived as different between untreated and film‒treated wines. Oenological parameters, total phenolic and tannin contents, as well as the flavan‒3‒ol and woody aroma profiles, did not change because of the film treatment. Meanwhile, a slightly increased anthocyanin content was noted beyond 24h of wine-film contact, maybe because of the plastic film absorption of certain wine components that anthocyanins are used to combine. A selective sorption of certain esters was observed, but no impact on the fruity perception of wines was underlined. Quite the opposite: film‒treated wines were described as more fruity than untreated ones, because the reduction of HAs content by the film treatment led to lower perception of corky notes, which were acting as a masking agent of pleasant aromas.

On the whole, film treatment may efficiently reduce cork taint of contaminated wines, by improving their overall organoleptic quality, and without almost no effect on their chromatic parameters, phenolic and aromatic composition.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

María Reyes González‒Centeno, Sophie Tempère, Pierre‒Louis Teissedre, Kleopatra Chira

Univ. Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, 33140 Villenave d’Ornon, France
INRA, ISVV, USC 1366 Œnologie, 210 Chemin de Leysotte, 33140 Villenave d’Ornon, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

La zonazione in due zone viticole dell’emilia Romagna

Entre 1988 et 1995, dans la région Emilia-Romagna, deux zonages viticoles ont été complétés en zones assez differentes, soit géographiquement, soit par les conditions pedo-climatiques, soit par l’encépagement.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

The impacts of simulated heatwaves on the induction and maintenance of bud cold tolerance in cultivated and wild-type Vitis species

Low temperatures are required for the acquisition and maintenance of bud cold tolerance, which are necessary for grapevines to survive freezing temperatures in winter.

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site.