Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Impact of climate change on the aroma of red wines: a focus on dried fruit aromas

Impact of climate change on the aroma of red wines: a focus on dried fruit aromas

Abstract

The volatile composition of grapes (free and bound forms) contributes greatly to the varietal aroma and quality of wines. Several agronomical parameters affect grapes composition and wine quality: maturity level at harvest, water status, and the intensity of sun exposure. Of course vinification of non-healthy grapes can induce off-flavors in the wine. All these parameters are strongly linked with the climate (meso or micro), and its modification may induce strong modification of the grape composition. In this context, several studies were run these last years to study the origin of the dried fruit flavors (DF, prunes and dried figs) detected in must and young red wines. Indeed, these nuances are becoming more and more frequent in young wines, especially those made from Merlot grapes.

The aroma compound composition of Merlot (M) and Cabernet Sauvignon (CS) musts and wines was investigated to identify specific molecular markers responsible for DF. Organic extracts were prepared and analyzed by GC-O-MS. Furaneol (1), homofuraneol (2), γ -nonalactone (3), 3-methyl-2,4-nonanedione (4), (Z)-1,5-octadien-3-one (5), δ-decalactone (6), and massoia lactone (7) were detected at high concentrations (higher than their individual detection thresholds) in musts or wines marked by DF aromas. Certain molecular markers of DF aromas were specific to musts or wines. Reconstitution experiments revealed that a specific mixture of compounds (1-4) expressed these aromas in red wines. Additional experiments conducted with 180 wine consumers revealed how the level of these compounds might modify their willingness to pay (WP).

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Alexandre Pons

Unité de recherche Oenologie – EA 4577 – USC 1366 INRA – ISVV – Univ. de Bordeaux, Villenave-d’Ornon – France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

The study of cultural practices to delay ripening and the characterization of their effect on wine composition is important in the mitigation of accelerated ripening caused by higher temperatures

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.