Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Key odorants of french syrah wines from the northern rhone valley

Key odorants of french syrah wines from the northern rhone valley

Abstract

Little research has been undertaken to investigate the main contributors to the aroma of Syrah wines from the cool northern part of the Rhone valley despite the historical importance of this cultivar for this wine region. The aim of the present work was to study the key odorants of Crozes-Hermitage wines made from two vintages with distinct climatic conditions (cool in 2013, warm in 2015) using supercritical CO2 dearomatized (sCO2) wine as a matrix for reconstitution studies, and the Pivot profile sensory method for omission tests. The volatile composition of the two wines was first assessed through determination of 76 molecules. Then, the impact of four matrices (synthetic wines with 10% and 12.5% of ethanol, and dearomatized native wines through rotary evaporation or using sCO2) on the quality of the reconstitution was investigated. For both vintages, 35 molecules with OAV > 0.5 were identified in both wines, with rotundone and 3-sulfanylhexanol (3SH) enabling the strongest discrimination between the two vintages. Wine dearomatized using sCO2 was identified as the best matrix. The best models built using this matrix were composed of aroma compounds with OAV > 5 and OAV > 10 highlighting that this dearomatization approach can be valuable to reconstitute the aroma of wine using a small number of molecules. For the 2013 wine, the omission of rotundone and 2-furfurylthiol had the greatest impact on the olfactive profile for non-anosmic and anosmic panelists to rotundone, respectively. 3SH, whose omission decreased the rating of the “fruity” attribute, was identified as the main contributor to the aroma of Syrah wine produced in 2015.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Olivier GEFFROY1*, Marie MORÈRE2, Grégory PASQUIER1, Ricardo LOPEZ3 and Jean-Stéphane CONDORET4

1PPGV, Université de Toulouse, INP-PURPAN, 75 voie du TOEC, 31076 Toulouse Cedex 3, France
2CRITT GPTE, 4 Allée Émile Monso, 31030 Toulouse cedex 4, France
3LAAE, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
4LGC, UMR CNRS 5503, 4 Allée Émile Monso, 31030 Toulouse cedex 4, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Les activités peroxidasiques du raisin de quelques cépages de Roumanie

Les enzymes d’oxydation (polyphénoloxydase, peroxydase) des raisins sont d’origine génétique dépendantes des facteurs climatiques et agrotechniques (Sapis et al, 1983). Dans le processus technologique de l’obtention du moût de raisins, ces enzymes catalysent l’oxydation de certains composés phénoliques naturellement présents dans le raisin, produisant ainsi des modifications indésirables de la couleur et de l’arôme du vin.