Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Fingerprinting as approach to unlock black box of taste

Fingerprinting as approach to unlock black box of taste

Abstract

The black box of taste is getting unlocked. The starting point is to distinguish taste from tasting. Consider taste as a product characteristic; tasting is a sensorial activity. Consequently, taste can be studied on a molecular level and therefore be assessed more objectively, whilst tasting is a human activity and by definition subjective.

 

P. Klosse (2004) developed a model to describe taste. This model has been further developed and tested in practice to analyse the taste profile of wines and beers. Mouthfeel sensations and their intensities are the key parameters of this model. Three classes of mouthfeel are distinguished: ‘contracting’, ‘coating’ and ‘drying’. The molecular compounds and the intensity of their contribution to mouthfeel have been identified, just like interaction effects. Newly developed instruments are used to measure the physico-chemical characteristics of these molecules. The individual scores of coating, contracting and drying elements of a sample give a ‘fingerprint’. A computer model calculates the coordinate that indicates the taste of the product.

 

This system has been successfully tested to classify wines and beers. Results indicate this approach gives useful insights in flavor composition. From a production perspective these insights can be used to enhance desired or suppress undesired compounds. The fingerprints allow an objective comparison of different wines. From a commercial perspective, producers can gather insights in consumer liking. In addition, the consumer gets more certainty that the purchased wine meets his expectations. Furthermore, the profile can be used in food pairing and as a basis for machine learning. The first web application of this approach has been introduced to the market.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Peter Klosse1, Boudewijn Klosse2, Georgios Agorastos3, Adam Dijkstra4 

1 The Academy for Scientific Taste Evaluation, T.A.S.T.E. foundation, Garstkampsestraat 11, 6611 KS Overasselt, The Netherlands
2 Tasters International, Amersfoortseweg 90, 7346AA Hoog Soeren, The Netherland
3 Faculty of Science and Engineering department, Maastricht University Campus Venlo, Maastricht University, 5911 AA Venlo, The Netherlands
4 Analysis Center De Colonjes, Bredeweg 2, 6562 DE Groesbeek, The Netherlands

Contact the author

Keywords

fingerprinting, mouthfeel model, classification, chemometrics, consumer preferences, taste

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Study to optimize the effectiveness of copper treatments for low impact viticulture

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981).

Impact of chitosan treatment on the physico-chemical features of a sangiovese red wine

Chitosan is gaining interest in red winemaking thanks to its ability to inhibit the development of Brettanomyces spp. yeast, or other undesired wine microbial threats. However, little is known about potential side-effects of its addition on the physico-chemical parameters of red wines.

Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

‘Mavrodafni’ (Vitis vinifera L.) is considered one of the oldest grapevine cultivars indigenous to the Greek vineyard, with western Peloponnese being its primary center of cultivation. ‘Renio’ is considered to be either a variant of ‘Mavrodafni’ or an altogether different cultivar. Both ‘Mavrodafni’ and ‘Renio’ can be found in the vineyards of the centers of cultivation, since ‘Renio’ is considered to be more productive compared to ‘Mavrodafni’, and for this reason, it has gradually replaced ‘Mavrodafni’ from cultivation over the course of time. The aim of the present study was to assay the mechanical properties, the polyphenolic content and the antioxidant capacity of skin extracts and must of berries coming from ‘Mavrodafni’ and ‘Renio’, cultivated in the same vineyard as well as in the different regions of cultivation of the PDO Mavrodafni Patras.

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.

The use of remote sensing for intra-block vineyard management

L’unité de gestion technique d’un vignoble est aujourd’hui la parcelle. Néanmoins, au sein d’une même parcelle, la variabilité de l’expression végétative et de la constitution des raisins à maturité, peut être grande, en particulier à cause d’une hétérogénéité du sol.