Macrowine 2021
IVES 9 IVES Conference Series 9 Gamay and Gamaret winemaking processes using stems: impact on the wine chemical and organoleptic characteristics

Gamay and Gamaret winemaking processes using stems: impact on the wine chemical and organoleptic characteristics

Abstract

AIM: Stalks are empirically known to bring many benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity. Not much used on Swiss grape varieties, the aim of this study was to identify the relevance of using this type of winemaking in the case of Gamay and Gamaret red grape varieties.

METHODS: Gamay and Gamaret grapes from a vineyards in Gland (Switzerland) were harvested and treated according to three modalities: fully destemmed used as control, 20% and 40% either whole grapes or stems added to the rest of the destemmed harvest. The influence of the stalks on the wine organoleptic properties was measured using different classical FTIR and colorimetric methods (alcohol, acidity, pH, SO2 …). Polyphenol content was evaluated using spectrophotometer measurements and concentration of flavanols and proanthocyanins in wine samples determined by HPLC-FLD-MS/MS. Sensory analysis were also performed in order to measure the impact on the wines.

RESULTS: Results showed that the total polyphenolic content was lower for trials with non-destemmed grapes and higher for the ones where stems were added. According to the tannin content, no significant differences were found between the modalities for the gamay grape variety. For the gamaret grape variety, the values were lower than the control when 20% and 40% of non-destemmed grapes were used. Planned sensory analysis should allow us to know the impact on the aromatic characters of these wines.

CONCLUSIONS:

This study allows us to acquire knowledge about winemaking processes performed using non-destemmed grapes and their impact on the wine characteristics. Both chemical composition and organoleptic characterization were taken into account

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Blackford, Janina IMHOF 2,  Julie ROESLE-FUCHS 2, Fabrice LORENZINI 1,  Gilles BOURDIN 1,  Benoit BACH 2 

Marie Blackford – 1. AGROSCOPE , Nyon, Switzerland 2. Changins, Viticulture and oenology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon 1, Switzerland ,Montaine COMBY 1,2,  Janina IMHOF 2,  Julie ROESLE-FUCHS 2,  Ágnes  DIENES-NAGY 1,  Fabrice LORENZINI 1,  Gilles BOURDIN 1,  Benoit BACH 2  1 AGROSCOPE , Nyon, Switzerland 2 Changins, Viticulture and oenology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon 1, Switzerland

Contact the author

Keywords

stem, whole cluster, winemaking, polyphenols

Citation

Related articles…

Creativini: an augmented reality card game to promote the learning of the reasoning process of a technical management route for making wine 

Nowadays, the entire viticultural and enological process is wisely thought out according to the style of wine to be produced and the local climatic conditions. Acquiring the approach of a technical management route specific for wine production remains a complex learning process for students. To enhance such learning, The Ecole d’Ingénieurs de PURPAN (PURPAN), an engineering school located in Toulouse southwest France, has recently developed Creativini, a collaborative card game in English made of 150 cards spread into 14 batches. Students in groups of 3 to 6 must design a technical production route, from plant material to bottling.

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Contribution of soil for tipifiyng wines in four geographical indications at Serra Gaúcha, Brazil

Brazil has a recent history on geographical indications and product regulation for high quality wines. The first geographic indication implemented was the Vale dos Vinhedos Indication of Procedence (