Macrowine 2021
IVES 9 IVES Conference Series 9 Pruning vine-shoots as a new enological additive to differentiate and improve the quality of wines

Pruning vine-shoots as a new enological additive to differentiate and improve the quality of wines

Abstract

AIM:The objective of these work was to demonstrate that toasted fragments of pruning vine-shoots added to the wines after fermentation provide them with differentiated aromatic notes and improve their quality.

METHODS:Vine-shoots of the Tempranillo red variety were prepared in terms of size and type of toasting. Subsequently, they were added in different doses to the finished wine elaborated with grapes of the same variety and were macerated for up to 2 months, studying the evolution of the chemical and sensory profile. The wines with the best sensory profile were bottled and the study of their evolution was continued for 1 year. The parameters analyzed were the conventional enological ones, the phenolic composition by HPLC-DAD and the volatile composition by SBSE-GC-MS. The sensory analysis was carried out by a panel of 7 expert tasters and the visual, olfactory and taste phases were evaluated using a score from 1 (lowest perception) to 10 (highest perception) for each of the different attributes evaluated.

RESULTS:In all cases, an increase in aromatic notes related to dried fruits, a lower presence of drying and bitter tannins, as well as a decrease in bluish colors, fruity notes and herbaceous character were detected. The conventional chemical analysis was similar than the control wines while the results of the phenolic and aromatic compounds were consistent with the sensory analysis.

CONCLUSIONS:

The toasted fragments of pruning vine-shoots, considered until now as a viticulture residue, can be used as a new enological tool, as they are able to differentiate and improve the quality of the wines. This fact contributes to the sustainability of the vineyard and to the concept of circular viticulture.

ACKNOWLEDGMENTS:

This study was supported by USARVID019 Project (Ref.: IDI-20190844), financed by Pago de la Jaraba winery (Albacete, Spain) through the FEDER and CDTI entities.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cebrián-Tarancón, Cristina, Fernández-Roldán, Sánchez-Gómez, Rosario: . Alonso, Gonzalo.L, M. Rosario

Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain., Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain. Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain. Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain. Salinas, Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain.

Contact the author

Keywords

enological additive, maceration, red wine, sensorial improvement, toasted vine-shoots

Citation

Related articles…

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

In the face of climate change, new grapevine varieties will have to show an adaptive phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine.

Exploring the mechanisms of grapevine single berry development and ripening

The strategy of single berry phenotyping is a recently rediscovered research tool that has gained great attention. The latest studies have indicated that previous physiological models based on pooling asynchronous populations of berries provided biased or blurred information on berry development key players. The possibility of monitoring and sampling single synchronized berries to study their development sequentially has opened new lines of research aimed at unraveling the genes that regulate grapevine fruit development. This study aimed to decipher the gene pathways responsible for the activation/deactivation of physiological processes involved in the green phase of growth, the onset of ripening, and the second growth phase.

The fundamental role of pH in the anthocyanins chemical behavior and in their extractability during winemaking

The chemical behavior of anthocyanins is considerably affected even by slight pH variations with impor-tant implications for the winemaking as well as for the wine conservation

Exploring the impact of grape pressing on must and wine composition

Pressing has a relevant impact on the characteristics of the must and subsequently on white wines produced [1]. Therefore, the adequate management of pressing can lead to the desired extraction of phenols and other grape compounds (i.e. Organic acids), aromas and their precursors, allowing the production of balanced wines [2]. This aspect is especially important to sparkling wine where the acidity and pH, and the content of phenols affect its longevity and the expected sensory character.

Plastic cover film on table grapes from field to cold storage

Plastic film covering is a technique largely used in viticulture to protect table grapes vines from adverse weather conditions and to reduce the negative effects of grapevine fungi disease. Plastic film composition affects solar radiation income inside the covering with effects on sunlight wavelengths in relation to different absorbance and reflectance. The interaction of selected light ranges with vines could influence grape ripening and yield and consequently influence shelf life.