Macrowine 2021
IVES 9 IVES Conference Series 9 Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

Abstract

The use of high-power ultrasound (US) is proving of great interest to the oenological industry due to its effects in the improvement of wine organoleptic characteristics, especially in terms of color [1, 2]. Even though the International Organization of Vine and Wine approved its industrial use on crushed grapes to favor the extraction of phenolic and aroma compounds during winemaking [3], most of the published studies have generally been carried out at a laboratory scale being very scarce the studies on a semi-industrial and industrial scale [2]. The effect of US, due to cavitation phenomenon, is the developing of shock waves capable of breaking solid surfaces such as cell walls of grape skins and seeds, improving the extraction of those compounds located inside the cells, mainly phenolic compounds. This effect sought with the use of US is similar to that observed when maceration enzymes (E), mainly pectolytic enzymes, are used with the purpose of dissembling the cell wall structure [1]. The combination of both techniques could be a useful tool for improving wine phenolic content if a synergistic effect occurs [1]. The objective of this study is to determine on a semi-industrial scale if the combined use of the US and E at the beginning of the maceration process enhance the effect of both techniques and if the ripening stage of the grapes affects the output of the results, since this factor has been found to interfere with the effect of the enzyme [4].Thereby, pilot scale trials were carried out with Monastrell grapes at two different ripening levels, testing two different maceration times (72 hours and 7 days) at the winery. Vinifications were carried out using both techniques (E and US) separately as well as in combination, also testing if the moment of the enzyme addition (prior to the application of US or added after the grapes had been sonicated) led to differences in the final wine quality. A semi-industrial scale high power ultrasound equipment was used at a sonication frequency of 30kHz. Physicochemical and chromatic parameters by spectrophotometry and high-performance liquid chromatography were analyzed at the time of bottling.The results obtained showed differences depending on the moment of the enzyme addition. When the enzyme was added after the sonication of the crushed grapes, the wine obtained with the less ripen grapes and a 72 hours maceration time presented chromatic characteristics similar to the control wine with 7 days of skin maceration. The effect was much more evident when the same experiment was carried out with the more mature grapes.In conclusion, this study on a semi-industrial scale demonstrated that an adequate combination of these techniques entails an optimization of the maceration process not only in time but also in improving the organoleptic characteristics in wine, the results being of special industrial interest.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paula Pérez-Porras

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.,Ana Belén BAUTISTA-ORTÍN, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain. Ricardo JURADO, Agrovin, S.A. Av. De los Vinos s/n, Alcázar de San Juan, 13600 Ciudad Real, Spain. Encarna GÓMEZ-PLAZA, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

wine, grape, enzymes, ultrasounds, ripening, phenolic compounds, maceration

Citation

Related articles…

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

Reconfiguring wine prescription : from traditional critics to digital social networks

The integration of digital social networks (DSN) has profoundly transformed communication practices within the wine industry, reorganizing the dynamics of prescription and marketing.

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”.

Crop water stress index as a tool to estimate vine water status

Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.