Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Abstract

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed. At present, they are mainly used to “secure” the fermentation process and avoid slow or sluggish fermentations. The consequences of such additions on the main reaction are well known (Beltran et al., 2005; Jiménez-Marti et al., 2007; Seguinot et al., 2018). However, their impact on the synthesis of aromas has been poorly studied. So, the main objective of this study was to compare the impact of nitrogen addition at different timings on both the kinetics and aroma synthesis. We also studied the effect of the initial nitrogen content of the must and the quantity of added nitrogen. To study the impact of these 3 parameters simultaneously, we used a Box-Behnken design and response surface modeling. Our results indicated that all three factors studied had important effects on fermentation kinetics and aroma production. The most remarkable points were the different regulation of the bioconversion of higher alcohols into acetate esters on one side and of fatty acids into ethyl esters on the other side. It was highlighted that the conversion of higher alcohols into acetate esters was maximum when nitrogen was added at the beginning of the stationary phase. Conversely, the highest conversion of acids into ethyl esters was reached when nitrogen was added close to the end of the stationary phase. This work enables to get a deeper understanding of the regulation of the yeast metabolism. It also underlines the possibility to refine the organoleptic profile of a wine by targeting the addition of nitrogen at a specific time during the stationary phase.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Joséphine Godillot 

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France,Christian PICOU, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Marc PEREZ, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Isabelle SANCHEZ, MISTEA, INRAE, Institut Agro, Montpellier, France Jean-Marie SABLAYROLLES, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Jean-Roch MOURET, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

alcoholic fermentation – nitrogen additions  – fermentative aromas – box-behnken design

Citation

Related articles…

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Reviewing the geometry of terraces in the Douro region towards sustainable viticulture

The Douro demarcated region constitutes just over 50% of the area of mountain vineyard in the world, i.e., vineyards with slope gradients of 30% or above. Among the different (terraced) vineyard layouts, the formerly preferred wider terraces supporting two rows of vines and the currently advocated narrower single vine row, dominate the vineyards’ planting layout. The slope of these terraces, in other words, the supporting earth ramp, is a key element in these vineyards’ construction.

Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Impact of fining agents on Swiss Pinot noir red wines

In the context of climate change, excessive bitterness and astringency in wines have become increasingly prevalent. While variety selection and viticultural practices offer long-term solutions, they require considerable time before yielding practical results. In contrast, fining remains an accessible and immediate tool for winemakers.