Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

Abstract

AIM: The aim of this study was to evaluate the impact of the organic, biodynamic and conventional production processes on the typicality of the Chianti DOCG wine and the relation with the environmental impact in terms of CO2 production. Typicality can be defined as a set of properties, described by an intrinsic and perceived quality. Intrinsic quality is the resultant of an eligibility profile, whose parameters are common to all wines (e.g., the sensory attributes and chemical compounds related to acidity, astringency, persistence, alcohol, viscosity, etc.); an identity profile, whose parameters are related to the grape variety and the terroir (aroma and volatile profiles); a style profile related to the brand, expression of the winemaking related choices.

METHODS: Fourteen commercial Chianti DOCG wines from 2016 harvest were selected based on their production management including organic, biodynamic and conventional. A survey was set up in order to get vineyard and winemaking information from the different estates producing the wines object of the present study. This information was converted in terms of estimated carbon dioxide production, on the basis of existing literature data about Life Cycle Analysis (LCA). Phenolic and volatile compositions, color indices and standard chemical parameters were determined on wines.Quantitative Descriptive Analysis was applied to define the eligibility, identity, and style properties (the intrinsic quality), while a group of 45 experts evaluated the differences between wines by Napping test and rated their typicality (perceived quality). For the evaluation of the chemical and sensory differences between wines, three global different models were created (conventional, organic and biodynamic) using a Soft Modelling of Class Analogy (SIMCA).

RESULTS: As regard the results of the survey, the organic and biodynamic managements showed the lower level of estimated values of carbon dioxide production. The statistical elaboration of the chemical and sensory data underlined that the different wine estate managements did not yield any systematic differences on the intrinsic and perceived quality, despite there were detected significant differences between wines. Moreover different levels of quality were evidenced inside every kind of management. In particular, the SIMCA model built on the chemical and sensory profiles highlighted that the conventional wine models presented the less variability, as opposed to the biodynamic model that resulted the more variable in terms of intrinsic and perceived quality.

CONCLUSIONS

The environmentally friendly production processes, such as organic and biodynamic production, with a low environmental impact, may not have necessarily an effect on the identity and thus on the typicality of wine. The process control represents the critical point for all the three kind of

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Monica Picchi

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Francesco MAIOLI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina CANUTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina MILLARINI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Paola DOMIZIO, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Bruno ZANONI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)

Contact the author

Keywords

sangiovese; biodynamic wine; organic wine; quality; typicality; carbon footprint

Citation

Related articles…

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.

DNA-Free genome editing confers disease resistance in grapevine

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].

Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

The Columbia Valley American Viticultural Area (AVA) of the Pacific Northwest, USA is the world’s largest officially recognized viticultural area with basalt bedrock.

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH