Macrowine 2021
IVES 9 IVES Conference Series 9 Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Abstract

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.1 The varietal thiols are released from cleavage of non-volatile sulfur-containing precursors or an interaction between a sulfur donor and a C6-compound.2 Machine-harvesting is the most common harvesting practice used in New Zealand, by which, there is a higher probability to add some leaves to the must. Leaves and grapes can contain elemental sulfur (S0), which is commonly sprayed in the fields to protect berries against powdery mildew. S0 is known to cause unwanted reductive aromas, including H2S, in certain wines unless remediation steps are undertaken during winemaking. Also, it was shown that extra S0 addition to the crushed grapes could lead to more varietal thiol formation in wines.3 Despite the clear effects of residual S0 present in the must on the final wine quality and aroma4, its measurement is not a regular practice undertaken in wineries due to the lack of easy and applicable methods.

Methods: We have optimized a sulfide sensor for S0 measurement in grape juice samples and investigated the correlation between S0 concentration in grape juice and varietal thiols concentration in final wines. A simple apparatus was designed to reduce S0 to sulfide using dithiothreitol (under acidic conditions, as H2S), followed by an ion-selective electrode (ISE) to measure sulfide concentrations (under alkaline conditions as S2-). GC-MS is being used to analyze thiol concentrations in wine samples to allow comparisons to be made with juice S0 concentrations.

Results: The semi-log calibration curve plotted based on the ISE data showed very good linearity. The results also showed that the reduction process was successful, and the apparatus is working well with both standard and juice samples. The ISE was confirmed to be able to detect the reduced sulfur at concentrations as low as 0.01 ppm.

Conclusion

The methodology allows action between the concentration of S0 residues and the concentration of varietal thiols in the final wines to be investigated. The analysis is applicable in a winery setting to evaluate the potential of grape juices to form varietal thiols and/or reductive compounds in wines

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Bahareh Sarmadi

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand,Paul A. Kilmartin, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Brandt P. Bastow, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand

Contact the author

Keywords

Sauvignon blanc, elemental sulfur, varietal thiols

Citation

Related articles…

Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Grapevine yield has been historically overlooked, assuming a strong trade-off between grape yield and wine quality. At present, menaced by climate change, many vineyards in Southern France are far from the quality label threshold, becoming grapevine yield-gaps a major subject of concern. Although yield-gaps are well studied in arable crops, we know very little about grapevine yield-gaps. In the present study, we analysed the environmental component of grapevine yield-gaps linked to climate and soil resources in the Languedoc Roussillon. We used SAFRAN data and IGP Pays d’Oc wine yields from 2010 to 2018. We selected climate and soil indicators proving to have a significant effect on average wine yield-gaps at the municipality scale. The most significant factors of grapevine yield were the Soil Available Water Capacity; followed by the Huglin Index and the Climatic Dryness Index. The Days of Frost; the Soil pH; and the Very Hot Days were also significant. Then, we clustered geographical zones presenting similar indicators, facilitating the identification of resources yield-gaps. We discussed the number of zones with the experts of IGP Pays d’Oc label, obtaining 7 zones with similar limitations for grapevine yield. Finally, we analysed the main resources causing yield-gaps and the grapevine varieties planted on each zone. Mapping grapevine resource yield-gaps are the first stage for understanding grapevine yield-gaps at the regional scale.

Présentation d’une méthodologie de caractérisation des terroirs et valorisation par l’étude de l’effet terroir sur la typicité et l’originalité du produit vin dans la région des Côtes du Rhône

In the global economic context, an Appellation d’Origine Contrôlée must now more than ever control the typicity and originality of the wines it produces. It is in this spirit that the Côtes du Rhône have decided to acquire the means necessary for this control.

Irrigation as a tool for heatwave mitigation: the effect of irrigation intensity and timing in Cabernet Sauvignon

Heatwave events, defined as 2 or more days reaching ≥ 38 °C, are an increasingly frequent phenomenon threatening grape production worldwide. Heat stress has been shown to have negative consequences on grapevine physiology, leading to increased evaporative demand and intensified water stress. Due to heatwaves overlapping with important stages of grapevine reproductive development, spanning from berry set to the ripening stage, severe heat can potentially compromise yield and grape quality. The physiological response of grapevine to heat stress suggests a potential use of irrigation to mitigate heatwaves, however there is limited information regarding the irrigation amounts and timings needed for this purpose. Following up on a pivotal trial conducted between 2019 and 2022, in this study irrigation treatments with varying intensity and timing of application were refined to determine their potential mitigation of heat-associated damage to yield and fruit composition.

Prospects of thermal imaging as a non-invasive tool to assess water status for irrigation scheduling in commercial vineyards

Aim: Irrigated viticulture is expanding worldwide mainly as a short-term adaptation strategy to climate change. Plant-based methods are increasingly being used for irrigation scheduling in commercial vineyards. Canopy temperature (TC) has long been recognized as an indicator of plant water status. TC, but also the thermal stress indices, e.g. crop water stress index (CWSI) and stomatal

Characterization of the Origin Denomination “Ribeira Sacra”

“Ribeira Sacra” is an origin denomination located between the provinces of Lugo and Ourense, in Galicia (northwest of Spain).