Macrowine 2021
IVES 9 IVES Conference Series 9 Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

Abstract

AIM: This study aimed to use simultaneous measurements of absorbance, transmittance, and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics as a rapid method to authenticate wines from three vintages within a single geographical indication (GI) according to their subregional variations.

METHODS: The A-TEEM technique (Gilmore, Akaji, & Csatorday, 2017) has been applied to analyse experimental Shiraz wines (n = 186) from six subregions of Barossa Valley, South Australia, from 2018, 2019 and 2020 vintages. Absorbance spectra and EEM fingerprints of the wines were recorded and the data were fused for multivariate statistical modelling with extreme gradient boost discriminant analysis (XGBDA) as reported by Ranaweera, Gilmore, Capone, Bastian, and Jeffery (2021) to classify wine according to their subregions. The cross-validated (k =10, Venetian blinds) confusion matrix score probabilities of classes were used to assess the accuracy of the classification models. A similar procedure was also carried out to discriminate subregions for a single vintage year. Basic chemical parameters (alcohol %v/v, pH, titratable acidity, and volatile acidity) were modelled with the partial least squares regression (PLSR) using A-TEEM data and reference chemical data.

RESULTS: Results have shown an unprecedented 100% correct classification of wines according to subregion across the three vintages and 98% accuracy for subregion in a single vintage year. Other model performance parameters of confusion matrix, including sensitivity, specificity, precision, and F1 score, were also showing the highest values (1.0) for each of the subregions. PLSR modelling revealed that A-TEEM data can also be used for a rapid assessment of basic wine chemical parameters. Notably, the results confirmed a distinct resolution among subregions despite their relatively close proximity within a single GI, indicating the effect of terroir on intraregional variation.

CONCLUSIONS

The sensitivity of A-TEEM allied with multivariate statistical analysis of fluorescence data facilitated the accurate classification of Shiraz wines according to the subregion of origin and production year. As a robust analytical method, A-TEEM can help identify the drivers of regional expression of wine and can potentially be developed for use within the supply chain to guarantee the provenance indicated on the label and to provide an assurance of quality. Overall, A-TEEM with XGBDA modelling continues to be shown as an accurate wine authentication tool that could even be applied at a subregional level.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ruchira Ranaweera

Department of Wine Science, The University of Adelaide, South Australia, Australia,Adam GILMORE, Horiba Instruments Inc., Piscataway, New Jersey, USA Dimitra CAPONE, The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide Susan BASTIAN, The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide David JEFFERY, The Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide

Contact the author

Keywords

geographical indication, authenticity, subregion, excitation-emission matrix, chemometrics, terroir

Citation

Related articles…

Vineyard mulching offer many benefits beyond winter protection

Grapevines are susceptible to freezing damage at temperatures below -5°F during the winter season. Preventing winter injury to grapevines is a major challenge in many grape-producing regions. Conventional methods such as hilling-up soil over graft unions have been developed as winter protection methods for preventing vine loss. However, these practices have drawbacks such as soil erosion, vine damage and crown gall development.

Territorio e vino tra immagine e comunicazione

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Characterization of different clone candidates of xinomavro according to their phenolic composition

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

Shading grapevines with dynamic agrivoltaics address the challenge of early ripening and wine quality related with climate change

Context and purpose of the study. Climate change accelerates grapevine’s phenology, advancing harvests by 2–3 weeks over the past 40 years negatively affecting wine style due to a lack of acidity and too much alcohol.

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.