Macrowine 2021
IVES 9 IVES Conference Series 9 Under-vine cover crop: effect over glycosidic aroma precursors of Vitis vinifera L. Cv Syrah

Under-vine cover crop: effect over glycosidic aroma precursors of Vitis vinifera L. Cv Syrah

Abstract

AIM: Volatile compounds joint to aromatic precursors form the aroma of grape must that will provide a characteristic aroma to the wine. A high proportion of aromatic compounds are present in the berry in their precursor form linked to sugars. The amount of the glycosidic fraction may be influenced by many factors such as soil, climatic conditions, viticultural practises, etc. [1]. The use of cover crops is a practice that is expanding in vine culture and to study indeep the effect of this practice on the aroma of grape is required. To this end, the effects of the employment of “Zulla” as cover crop on glycosidic aromatic precursors of Shyraz grapes has been studied.

METHODS: Grape samples from vines with three different amount of cover crop (one line, two lines and four lines) and without cover crop were recolected during two harvests (2019 and 2020). Glycosidic aroma precursors fraction was extracted and hydrolized following the method proposed by Loscos et al., [2] and the aglycons were analyzsed by SPME-GC-MS following the method appliyed by Talaverano et al. [3] with modifications.

RESULTS: A total of 40 aromatic precursors were determined in the Syrah must samples analyzed. Among them, 12 terpenes, 11 norisoprenoids, 7 alcohols, 5 aldehydes and 3 acids. Significant differences were found among the precursors volatile compounds found in the different under-vine cover crop strategies tested. The employment of “Zulla” showed a positive effect in the amount of aroma precursors in the must.

CONCLUSION

The employement of “Zulla” as under-vine cover crop influences the composition in aromatic precursor present in the grape and potentially the volatile profile of the resulting wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

M.P. Segura-Borrego 

Nutrition and Food Science Area, Faculty of Pharmacy, University of Seville, Seville, Spain.,S. Tejero, Nutrition and Food Science Area, Faculty of Pharmacy, University of Seville, Seville, Spain. B. Puerta, Agricultural and Fisheries Research and Training Institute (IFAPA), Rancho de la Merced. Jerez de la Fra. Spain. E. Valero, Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide, Seville, Spain. M.L.Morales, Nutrition and Food Science Area, Faculty of Pharmacy, University of Seville, Seville, Spain. C. Ubeda, Nutrition and Food Science Area, Faculty of Pharmacy, University of Seville, Seville, Spain.

Contact the author

Keywords

zulla cover crop, aroma precursor, ecological crop, warm climate zone

Citation

Related articles…

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Viticultural Climatic Zoning and Digital Mapping of Rio Grande do Sul – Brazil, using Indices of the Géoviticulture MCC System

The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices – Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI).

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

The anthocyanin profile of galician endangered varieties. A tool for varietal selection

AIM: The current loss of genetic grapevine diversity is mainly due to the reduced number of varieties used for making wine. A way of preserved endangered varieties is the establishment of germplasm banks.