Macrowine 2021
IVES 9 IVES Conference Series 9 The aroma diversity of italian white wines

The aroma diversity of italian white wines

Abstract

AIM: Aroma is a key contributor to white wines sensory typicality, perceived diversity and overall preference. Italy produces dry still white wines from native grape varieties and geographically defined areas, representing different grapegrowing, winemaking and cultural heritages. The related chemical and sensory elements, the relevant pathways and variables, and the factors associated with their olfactive perception are in large part not known. Altogether, this limits the implementation of production and marketing strategies truly based on the specificity of Italian white wines, with reduced competitiveness and sustainability. The aim of this project is to provide, by means of chemical and sensory approaches, a comprehensive characterization of the chemosensory diversity of Italian white wines.

METHODS: The project will focus on wines of the following appellations/varieties: Arneis, Albana, Erbaluce, Falanghina Fiano, Garganega, Greco di Tufo, Lugana, Nosiola, Pinot Grigio, Ribolla, Traminer aromatico, Trebbiano d’Abruzzo Verdicchio, Vernaccia di San Gimignano, Vermentino. Samples will be collected directly from wineries. About 20 wines will be collected for each appellation/variety. Analyses will include GC-MS and GC-O for the identification and quantification of the most potent impact odorants of each wine type, HPLC, SDS-PAGE, and UV-Vis for the quantification of non-volatile components, E-nose untargeted fast profiling of wine volatile composition, sensory evaluation by means of both rapid and descriptive methodologies. The main pathways of formation of the most relevant aroma compounds will be investigated, as well as their interactions with non-volatile components. Chemoperception mechanisms of selected key odorants will also be studied at the level of receptor-ligand interactions.

RESULTS: The chemical and sensory drivers of Italian white wine intrinsic and perceived diversity will be established, enabling optimized management of winemaking procedures, sustainable long-term strategies for geographical indication protection, tailored marketing and consumers response strategies and preferences. 

ACKNOWLEDGMENTS:

 This project is funded by Italian Ministry of Education and Research (MIUR), PRIN 2017.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maurizio Ugliano 

University of Verona, Italy,Matteo MARANGON, University of Padova, Italy Fulvio MATTIVI, University of Trento, Italy Giuseppina Paola PARPINELLO, University of Bologna, Italy Paola PIOMBINO, University of Naples, Italy Luca ROLLE, University of Turin, Italy

Contact the author

Keywords

italian white wines, aroma

Citation

Related articles…

Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Grapevine, Vitis vinifera, requires grafting on Phylloxera tolerant rootstocks of American origin in most viticultural areas of the world. The most commonly used species in rootstock creation are V. berlandieri, V. riparia and V. rupestris. Rootstocks not only provide tolerance to Phylloxera but assure the supply of water and mineral nutrients to the scion. The objective of this work was to determine to what extent rootstocks of different parentages alter the mineral composition of petioles of grapevine.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Exploring diversity of grapevine responses to Flavescence dorée infection

Flavescence dorée, a serious threat to grapevine cultivation in several European Countries, is caused by phytoplasmas in the 16Sr-V ribosomal group, classified as quarantine organisms in the EU and transmitted mainly by the insect vector Scaphoideus titanus. The disease is controlled only by indirect and preventive measures, with important economic and environmental concerns. Genetic resources from the great variety of Vitis vinifera germplasm together with application of new genomic techniques could be applied to produce resistant/tolerant plants, once the genetic bases of susceptibility are elucidated. In a current Italian project (BIORES*) we are evaluating different international and local grapevine cvs. as well as microvine plants for their response to FD transmission and multiplication in controlled conditions.

Colloids in red wines: new insights from recent research

Despite their significant impact on wine quality and stability, colloids in red wine remain relatively under-researched. A series of studies, developed in the context of the d-wines project, aimed to provide a comprehensive understanding of the structure, composition, and formation mechanisms of red wine colloids by studying monovarietal wines from 10 of the most significant Italian red grape varieties. Starting from the idea that proteins, polysaccharides, and tannins should be involved in colloid formation, 110 monovarietal red wines were analysed for these components, revealing high inter- and intra-varietal diversity [1].

Overcoming habit formation in the production of wine

Evidence indicates that climate change affects the environment, human health, and well-being via drought, increasing greenhouse effect, and climatic catastrophes. As the wine sector is also negatively affected by climate change, the role of climate change mitigation and adaptation policies is important in wine production. One example of an adaptation policy is the implementation of grapevine genetics (duchene, 2016), while organic farming may be used as an approach to mitigate the consequences of climate change (vinci et al., 2022). To this end, the european commission’s objective is to reach the european green deal target of at least 25% of the european union’s agricultural land under organic farming by 2030.