Macrowine 2021
IVES 9 IVES Conference Series 9 Monitoring the tawny port wine aging process using precision enology

Monitoring the tawny port wine aging process using precision enology

Abstract

AIM: Tawny Port wine is produced in the Douro Demarcated Region by blending several fortified wines in different aging stages. During the aging process in small wood barrels, the red wine color progressively develops into tawny, medium tawny, or light tawny. In this Port wine style, there are some special categories like Tawny Reserve, Tawny with Indication of Age (10, 20, 30, and 40 years), and “Colheita” that are commercialized worldwide. This last category is an exception, as these wines are from a single vintage [1]. In Tawny Port wine the oxidative aging process is multifactorial and critical for reaching the required quality. So, real-time monitoring of important intrinsic and extrinsic factors known to impact both wine quality and aging time are important to optimize and to manage the natural inconsistency among wines aged in diverse long-used wood barrels. This work shows the design, development, and implementation of a remote distributed system to monitor factors that are identified to be critical for the Tawny Port wine aging process.

METHODS: The Tawny Port wine aging process was monitored in two equal wineries – one of them with controlled temperature– in Vallegre, Porto S.A.. Barrels were instrumented with sensors to measure parameters during the aging process, specifically: pH, redox potential, dissolved oxygen, and temperature. The monitoring process was done using an RS-485 industrial network, which interconnects the mentioned sensors [2].

RESULTS: The distributed monitoring system was capable to detect differences among barrels and among the different storage conditions (controlled and room temperature). Redox potential and dissolved oxygen were the wine’s parameters where the differences among the different barrels were higher under the same storage conditions. Since the Tawny Port wine aging process is oxidative, a variation in the wine’s aging process among barrels is to be expected. Significant differences were detected in the oxygen consumption rate among the different barrels. Differences in the phenolic composition were also observed in the aged wine, both at controlled and room temperature

CONCLUSIONS

Results indicated that the distributed monitoring system was capable to detect variations among barrels and among both storage conditions: controlled and room temperature. Actually, redox potential and dissolved oxygen were the wine’s factors where the variances found were higher among wood barrels, while under the same storage conditions. This methodology is based on easy-to-use implanted systems, with the intention of giving an important contribution to other projects in the area of precision enology

Acknowledgment

The authors want to acknowledge FCT Portugal for funding the CQ – VR through the grant (UIDB/00616/2020 and UIDP/00616/2020), to project INNPORT “Otimização do processo de envelhecimento do vinho do Porto Tawny” and Vallegre Company.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Contact the author

Keywords

precision enology, wine aging, instrumentation

Citation

Related articles…

Growth in global table grape production and consumption is fueled by the introduction of new seedless varieties

Table grape consumption worldwide has experienced a remarkable growth in the first two decades of the 21st century, becoming the third most consumed fresh fruit in some countries, after bananas and apples. This increase has been attributed to several reasons, including the availability of seedless grapes, which has been a key factor in the increase in consumption.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Prediction of astringency in red wine using tribology approach to study in-mouth perception

AIM Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.

Discrimination of monovarietal Italian red wines using derivative voltammetry

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics.

Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

The European Landscape Convention (ELC, 2001) defined the landscape as the “part of a
territory as perceived by the population and resulting from the action of natural and/or human factors and their interrelationships”. Wine landscapes, protected or not under figures such as cultural landscapes or Cultural heritage, are a clear demonstration of this definition, denoting the interrelationships of the natural
environment and the action of the human, which modulates the territory to give the different wine
landscapes. This work was focused on the study of the effect of the human factors linked to the cultivation of the vine on the modification of the landscape.