Macrowine 2021
IVES 9 IVES Conference Series 9 Assay of distinct modes of polysaccharidases dosage in vinification with cv. Malbec. Effects on microbiological evolution, color and skin depletion

Assay of distinct modes of polysaccharidases dosage in vinification with cv. Malbec. Effects on microbiological evolution, color and skin depletion

Abstract

In the maceration stage of winemaking, enzymes can be used to degrade the polysaccharides present in the cell walls and middle sheets, and thus facilitate the extraction of juice and the release of polyphenols and aroma precursors retained in the grape skins. This work aims to analyze the influence of two enzyme complexes produced by autochthonous yeasts on the red winemaking process, in order to evaluate their effect on the chemical composition of the wines obtained, as well as on the extraction of color and polyphenols, and the depletion of the skin. Two strains previously selected for the effect of their enzymatic complex on the color extraction and improvement in the technological properties of the grape must were used (Longhi et al., 2019). A multi-enzymatic extract from Aureobasidium pullulans m11-2 was obtained by inoculating the microorganism in a broth according to Moyo et al. (2003) with modifications (pH 3.8) and incubated with stirring at 28°C for 72 h. Pectinase, xylanase, cellulase and amylase activities were quantified by determining reducing sugars by DNS, modified by Qian Li et al. (2015). Likewise, Torulaspora delbrueckii m7-2 was used for the production of the enzyme complex during vinification. Malbec red grapes (Vitis vinifera L.) from San Rafael (Mendoza) wine region, vintage 2021, were used to conduct the vinifications. The must obtained by crushing 60 Kg of grapes was corrected in acidity, sulfited (50 ppm) and distributed in 5 L containers. Four winemaking assays were performed, in duplicate: (1) inoculation with a native strain of Sacchromyces cerevisiae (SR1), at 108 cell/mL as inoculum, conducted at 20°C (control, C); (2) sequential inoculation of T. delbrueckii m7-2, with an initial cellular concentration of 107 cells/mL, followed by SR1 inoculation at 4th day (Td); (3) cold pre-fermentation maceration (CPM, 8°C-4 days) with m11-2 enzyme extract and SR1 inoculation (Ap); and (4) CPM without enzymatic treatment and SR1 inoculation (E). Growth kinetics of total yeasts were determined on YPD and DRBC agar, and of non-Saccharomyces yeasts in lysine medium. All enzymatic activities were monitored at pH 3.80 and 20°C. The pectinolytic activity was the main one, showing a level of 1.80 U/mL in the m11-2 extract and an initial level of 1.47 U/mL for the in situ producer strain (m7-2). Microscopic observations of the extracted skins in Ap and E vinifications were carried out to evaluate the effect of the enzymatic complex m11-2 on the cell wall, and were also compared with the fresh grape skins. Differences were observed between the skins enzymatically treated (Ap) and the control (E); the former showed cell emptying, greater rupture of the epidermis layers and less firmness, unlike the control that exhibited almost intact epidermal layers. These images allowed us to know the cell morphology of the varietal cv. Malbec and the enzymatic hydrolysis of its cell walls.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sara Jaquelina Longhi 

 Biotechnology Laboratory, Department of Biology and Food, Faculty of Sciences Applied to Industry, National University of Cuyo. Bernardo de Irigoyen 375, San Rafael, Mendoza, Argentina. National Council for Scientific and Technical Research (CONICET), Godoy Cruz 2290, Autonomous City of Buenos Aires, Argentina. ,María Carolina MARTÍN (1,2)  María Belén AVENDAÑO(1) María Gabriela MERÍN (1,2)   Luciana Paola PRENDES (1,2) Juliana GARAU (1,2) Vilma Inés MORATA DE AMBROSINI (1,2) (1) Biotechnology Laboratory, Department of Biology and Food, Faculty of Sciences Applied to Industry, National University of Cuyo. Bernardo de Irigoyen 375, San Rafael, Mendoza, Argentina. (2) National Council for Scientific and Technical Research (CONICET), Godoy Cruz 2290, Autonomous City of Buenos Aires, Argentina

Contact the author

Keywords

polysaccharidases, winemaking, polyphenols, malbec, grape cell wall

Citation

Related articles…

A applied viticultural zoning, based on the “secteurs de la reference” methodology, in the Cognac vineyard (France)

Dans les Charentes, en réponse à une crise de production du vignoble destiné à la production de Cognac, un plan de diversification viticole pour des vins de pays de qualité est mis en place. Il nécessite une connaissance des sols et de leurs caractéristiques viticoles pour orienter le choix des types de vins et adapter l’itinéraire technique de production.

Raman spectroscopy as a rapid method to assess grape polyphenolic maturation and wine malolactic fermentation on site

Wineries can increase their economic and environmental sustainability by optimizing the winemaking procedures, from harvest to wine maturation and conservation. Based on analytical data of the chemical composition and wine sensory evaluation, the enologist makes his own decision regarding the enological interventions at the harvest date selection, winemaking and post-winemaking.

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].

Effect of Candida zemplinina oak chips biofilm on wine aroma profile

Candida zemplinina (synonym Starmerella bacillaris) is frequently isolated in grape must in different vitivinicultural areas. The enological significance of C. zemplinina strains used in combination with S. cerevisiae has been demonstrated, being wines produced by the above-mixed starter, characterized by higher amounts of glycerol and esters.