Macrowine 2021
IVES 9 IVES Conference Series 9 Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Abstract

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times and the numerous resulting reaction products. There is a need for global and rapid in vitro tests to predict wine oxidation kinetics. First, three different forced oxidation protocols were developed on a “young” (2018) red wine to follow the consumption of oxygen. After oxygen saturation of the wines at 22°C, the red wines were oxidized following 3 different protocols

1 – heat at 60°C

2 –laccase oxidation at 22°C

3 –hydrogen peroxide oxidation at 22°C

The oxygen consumption kinetics were followed by oxo-luminescence oxygen measurements. The oxygen consumption all followed a first order kinetic on the 2018 wine but had different kinetics constants depending on the oxidation protocol. High resolution UPLC-MS was also performed on forced oxidation samples and compared to natural oxidation samples of naturally aged red wines (2014 and 2010 vintages). Specific polyphenols (anthocyanins, flavanols and their derivatives) were impacted in both naturally or artificially aged wines and differed depending on the oxidation protocol. For example, the intensity of some low molecular weight polyphenols increased both in naturally or artificially heated aged wines ([M+H]+= 287; 289; 291; 303; 317; 319). However, some differences were observed between natural and artificial aging for higher molecular weight polyphenols ([M+H]+= 493; 535; 639)

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Stacy Deshaies

SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.,Guillaume CAZALS: IBMM, Univ Montpellier, Montpellier, France  Christine ENJALBAL: IBMM, Univ Montpellier, Montpellier, France  François GARCIA :SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. Laetitia MOULS: SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. Cédric SAUCIER: SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.

Contact the author

Keywords

wine; oxidation; polyphenol; syrah; mass spectrometry; oxygen; vintage; markers

Citation

Related articles…

Phenolic composition and physicochemical analysis of wines made with the syrah grape under double pruning in the Brazilian high-altitude cerrado

Wine growing has proven to be a development opportunity for agribusiness in several new regions of brazil, including the federal district. There are more than ten existing wineries, established in the last five years. Through the double pruning system, which consists of trimming the growing shoots in the summer and positioning the ripening of the fruits in a cooler period of the season, the grapes are sought to ripen more completely. The syrah variety has shown excellent adaptation to this cycle management model.

Plant nitrogen assimilation and partitioning as a function of crop load

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

The cultivated area of table grapes worldwide has experienced a paramount increase over the last two decades. In this current scenario, traditional varieties are being replaced by new cultivars that prioritize a profitable and sustainable agriculture, while satisfying consumer demands. It is widely recognized that wine varieties, especially those with red berry flesh, are renowned for their high antioxidant capacity and phenolic compounds, which promote health. Recently, this topic has also gained significance in table grape breeding programs.

New disease-resistant grapevine varieties response to drought under a semi-arid climate

In many regions, climate change leads to an increase in air temperature combined with a reduction of rainfall, intensifying climatic demand and water deficits (WD) (Cardell et al. 2019), which in turn may negatively impact grapevine development, yield and grape composition (Santos et al. 2020). In addition, climate change may also increase disease pressure, leading to further yield and quality losses, besides increasing costs due to increased vineyard spraying (Santos et al. 2020) and reducing viticulture acceptability by consumers (Guichard et al. 2017). Adopting new resistant varieties appears as a promising long-term solution to better manage vine protection, but unfortunately little is known regarding their behavior in front of WD.

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.