Macrowine 2021
IVES 9 IVES Conference Series 9 Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

Abstract

AIM: the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines. The protocol was then applied to determine the evolution of VCCs in wines after accelerated ageing. VCCs are widely present in foods and beverages; their formation is due to chemical reactions and biological processes where oxygen plays a key role [1]. However, many of these are side transformations that highly affect the final aroma. The total package oxygen is usually negligible in bottled wines. However, that amount combined with temperature and light, can modify the oxidative status with a consequent loss in varietal aroma and an increase in off-flavors and defects [2]. At the same time, several carbonyls are related to pleasant scents so the winemaking of many oxidized wines like Madeira, Port, Vin Santo is tailored to emphasize their productions. We expect that a high-throughput method for the measure of the concentration of carbonyls could be added as a new quality control tool for the evaluation of a complete fermentation, correct winemaking style, and proper bottling and storage.

METHODS: Various white wines (cv. Gewürztraminer) and red wines (cv. Teroldego) were submitted to accelerated-ageing process. All bottles were opened under inert atmosphere inside a sealed hood and submitted to the accelerated-ageing procedure, according to Oliveira et. al. [3]. The extraction procedure was based on the protocol purposed by Moreira et. al. [4], upgraded with a fully automated sample preparation performed by a CTC-PAL3 autosampler. The sample was transferred from the 2 mL vial (kept at 5°C) to a 20 mL vial and then spiked with internal standard (IS) and derivatizing agent (PFBHA) solutions. After a 7 minutes derivatization at 45°C, the SPME extraction is performed at 40°C for 20 minutes. Finally, the fiber desorption takes place at 250°C for 4 min. GC-MS analysis was carried out using a TSQ Quantum XLS Ultra Triple Quadrupole GC-MS/MS using MRM acquisition. Calibration curves were acquired in matrix using a commercial white wine treated with activated carbon to remove odor active compounds. Acetone d6, 4-methyl-4-penten-2-one d10, Octanal d16 and 4-fluorobenzaldehyde were used as IS. As many as 56 VCCs were the analytes under investigation.

RESULTS: all compounds showed a good linearity spanning from approximately 0.1 to 50 µg/L (R2>0.99). Intra-day and 5 days repeatability showed an RSD

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maurizio Piergiovanni

University of Trento, Centre Agriculture, Food, Environment (C3A), San Michele all’Adige, Italy,Silvia, CARLIN, Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach, San Michele all’Adige, Italy  Cesare, LOTTI, Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach, San Michele all’Adige, Italy.  Fulvio, MATTIVI, University of Trento, Centre Agriculture, Food, Environment (C3A), San Michele all’Adige, Italy.

Contact the author

Keywords

carbonyls, oxidation, ageing, accelerated ageing, solid-phase micro extraction, automatization, oxygen, off-flavors

Citation

Related articles…

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a Southwestern France vineyard

The soil plays a pivotal role in the agroecological transition processes, due to its numerous implications in production support, water regulation, air and nutrient supply, and its function of reservoir for the major part of planet biodiversity. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it gathered winegrowers from the south-west of France (Gascony), scientists, advisors and technicians, around a project focused on the biological functioning of viticultural soil and the design of better-adapted technical paths for soil protection.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

French regulations related to vineyard spraying and examples of devices developed in France and around the world to limit the risks of point-source pollution

Managing pests in vineyards presents a major challenge for winegrowers, who are seeking effective solutions to control diseases and pests.

Analytical characterization of Oloroso Sherry in Sherry Cask seasoning and its influence in the ageing of brandy de jerez

Oloroso Sherry is a typical fortified wine from Jerez de la Frontera (south of Spain). It is one of the most used in the seasoning of oak barrels, called Sherry Cask, destined in this area for ageing brandies or condiments as wine vinegars. Brandy de Jerez is an European Geographical Indication for grape-derived spirits. Its special organoleptic characteristics are due to its traditional dynamic ageing in Sherry Casks. American oak is the most common wood employed in Jerez area, where Brandy de Jerez is exclusively manufactured. During ageing period of Sherry and brandies, the wood is not only a container, it is involved in several physicochemical process with the Sherry or the distillate. Oak wood is the responsible of the presence of many compounds in the products, affecting their aroma and chemical composition and having a high influence in their final quality. Moreover, the seasoned wood with Sherry wine could transfer the compounds from wine into the brandy, improving its aroma and flavor.

The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

Soil is a three-dimensional complex system, which constitutes a major component of Terroir. Soil characteristics strongly influence vine development, grape oenological potentialities and thus wine quality and style.