Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Abstract

AIM: Ellagitannins are the main oak wood phenolic compounds that contribute to wine and spirits organoleptic quality (color, astringency, bitterness)(1-3). Given the lack of knowledge regarding their composition and evolution in spirits, the objectives were to follow their extraction kinetic in Cognac “eaux-de-vie” matured in barrel representing different toasting and to observe their evolution and structural modifications during aging.

METHODS: Eight different toasting levels were used for studying the impact of the toasting on ellagitannins composition. Two verticals (1978-2018) of “eaux-de-vie” samples coming from two terroirs were analyzed in order to observe ellagitannins evolution during aging. The above analyses were conducted using HPLC-Triple Quadrupole mass spectrometer (4) and the unknown compounds were identified by UPLC-Q-TOF, purified by preparative HPLC prior to 1D/2D-NMR analysis.

RESULTS: A general trend between the toasting levels and the individual ellagitannins content and composition was observed. Indeed “Eau-de-vie” aged in light toasted barrel has 40% higher castalagin content than in high toasting. During spirit aging, native ellagitannins content decreases over time. After two years, only castalagin remains quantifiable, suggesting that they undergo transformations leading to the formation of new compounds. Among them, whisky tannin B and A ([M-H]- ion peak at m/z 977.0896 and m/z 675.0834 respectively), resulting from the ethanol/castalagin or castalin reaction as well as some ellagitannin oxidation products like dehydrocastalagin and dehydroroburin D were identified for the first time in Cognac “eaux-de-vie” samples. The kinetic of the above compounds is in progress and the influence of both aging and barrel toasting is being researched.

CONCLUSIONS:

This work brings new insights on the Cognac ellagitannins content and how these molecules are influenced by aging and barrel toasting. Tastings will be performed to understand the organoleptic impact of these compounds.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mathilde Gadrat, Joel Lavergne, Catherine Emo, Pierre-Louis Teissedre, Kléopatra Chira,

1. Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2.   Courvoisier SAS, 2 places du château, 16200 Jarnac, France ,
Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

cognac, ellagitannins, mass spectrometry, toasting

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.

Evaluation of the site index model for viticultural zoning

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Water and physiological response to early leaf removal of cv. Verdejo in rainfed conditions, at different times of the day, in the D.O. Rueda (Spain)

Aim: Early leaf removal, generally applied before flowering, is mostly conceived as a technique to control grape yield and improve the health of grapes and focused on the final objective of increasing wine quality.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.