Macrowine 2021
IVES 9 IVES Conference Series 9 White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

Abstract

AIM: Consumer preference favors flint-glass wine bottles over the traditional dark-colored, but it is documented that light exposure can cause white wines to produce off-aromas and change in color, and consequently da[1]mage their quality. Aim of the study was to study the white wine shelf life under the typical supermarket conditions, by recording the light and temperature exposure, the colorimetric changes, and the light-strike fault.

METHODS: One pilot experiment based on two white wines and eight-time points and one kinetic experiment based on four white wines and seven-time points were designed and realized using a typical supermarket shelf for 32 and 50 days, correspondently. By installing prototype sensors at 32 points of the shelf, the temperature, UV, IR, and Visible light exposure were registered every 10 min. Approximately 600 commercial wines, bottled in flint and colored glass, were used. The colorimetric changes of the wines were registered and the light-strike fault was evaluated.

RESULTS: Generally, green glass bottles secured wine quality for the tested period. Only a few flint glass bottled wines developed the fault after 1-2 days of supermarket shelf life, but all developed the fault after 3-4 weeks. Storing the wines in dark and cold after a period of exposure to light did not eliminate the fault. A limit of up to 20-30 UVI of UV light passing through the glass could be set, considering the relative UV light in respect to the sensor measurements and the glass type. Moreover, wines bottled in flint glass after two days of shelf life had already lost more chromatic intensity and yellow hue than the same wines bottled in the green glass after 50 days.

CONCLUSIONS:

Light-strike wine fault is irreversible, occurs in all white wines, even if some are more resistant than others are, and the dark colored glass bottle is the best solution to avoid the problem.

DOI:

Publication date: September 17, 2021

Issue: Macrowine 2021

Type: Article

Authors

Panagiotis Arapitsas, Silvia, CARLIN, Stefano, DALLEDONNE, Matthias, SCHOLZ,  Antonio, CATAPANO, Wenda srl, Bologna,  Fulvio, MATTIVI, 

Department of Food Quality and Nutrition, Research and Innovation Centre Fondazione Edmund Mach, San Michele all’Adige, Italy, Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy

Contact the author

Keywords

shelf-life; wine fault; taste of light; storage; light-strike; cielab; sensors; pinot gris; chardonnay

Citation

Related articles…

Innovative approach to energy efficiency benchmarking in the wine sector

The wine industry, a key sector for the European Union’s economy, exhibits significant energy consumption, amounting to approximately 1,750 million kWh annually within this geographic context, with major contributions from Italy, France, Spain, and Portugal (Fuentes Pila et al., 2015).

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs.

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes.

A new approach for sensory characterization of grape. Relationship with chemical composition

Characterize taste and mouthfeel properties of grapes elicited by the phenolic fraction (PF) of grape berries and establish relationships with chemical variables. METHODS: As many as 31 diverse grape lots of Tempranillo Tinto and Garnacha Tinta from three different regions were harvested. Grapes were destemmed and macerated in 15% of ethanol for one week and extracts were submitted to solid phase extraction. The recovered polyphenolic fraction was reconstituted in wine model and characterized by a panel of 21 wine experts employing a list of 23 taste and mouthfeel-related attributes following a rate-k-attributes methodology. RESULTS: Six significant attributes among the 31 samples differed based on ANOVA results: “dry”, “coarse”, “bitter”, “dry on tongue”, “sticky” and “watery”. PCA with VARIMAX algorithm was calculated.

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.