Macrowine 2021
IVES 9 IVES Conference Series 9 Functionality of different inter-stimulus rinse protocols for the sensory analysis of wildfire affected wines

Functionality of different inter-stimulus rinse protocols for the sensory analysis of wildfire affected wines

Abstract

From the effect of global climate change, wildfire occurrence during grape ripening has increased. These wildfires produce smoke that can carry organic compounds to a vineyard. These smoke compounds are adsorbed in the grape berry and result in wines with elevated levels of smoke-related phenols. These wines are described as having a smokey, burnt, and dirty aroma (Kristic et al, 2015). Not only are volatile phenols carried by smoke, but additionally glycoconjugate forms of these phenols are present as will. These have been found to have a large impact on the flavor of wines, being the cause of a lasting ashy aftertaste post consumption (Parker et al, 2012). When evaluating the sensory profile of these wines when tasted one after the other, there is an observed problem due to the lasting nature of these undesirable attributes and high level of carry-over from sample to sample. The aim of this work is to evaluate the extent this carryover occurs, along with the best sensory practices to mitigate its influence via different inter-stimulus rinse protocols. For evaluation, three wines produced from grapes with varying amounts of smoke exposure (no smoke, medium smoke, high smoke) were used across three studies. To determine the driving and differentiating attributes in these wines, attribute check-all-that-apply was performed. From this, six attributes (Ashy, Burnt, Floral, Mixed berry, Smokey, Woody) were found to be highly present and were differentiating factors between the wines. The following study was a temporal-check-all-that-apply to determine how long these attributes were perceived in-mouth. It was found that after 120 seconds the number of citations for each attribute across all three wines dropped below 0.1. Finally, a fixed time point temporal method was employed to determine the efficacy of three different inter-stimulus rinse protocol (water, pectin, and a mouthwash prerinse with water between samples) to attempt to decrease this time period. The results of this work indicated that there is a significant sensory profile difference between wines that see various levels of smoke exposure. In terms of inter-stimulus protocol, there was no significant improvement of alternative rinse systems over a traditional water rinse. The conclusions of this work can be used to better understand the sensorial profile of wines produced from wildfire affected grapes and can be used to guide improved sensory practices in future analysis of these wines.

 

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jenna Fryer, Thomas Collins, Elizabeth Tomasino

Food Science & Technology, Oregon State University,Viticulture and Enology, Washington State University

Contact the author

Keywords

wildfires, smoke, wine, sensory analysis

Citation

Related articles…

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Effect of microwave maceration and SO2 free vinification on volatile composition of red wines

This study evaluates the effect of microwave treatment in grape maceration on the content of free and glycosidically bound varietal compounds) of must and wine and on the overall aroma of wines produced in the presence and absence of SO2.

Influence du terroir sur la composition en flavonoïdes de la baie de raisin de Cabernet franc en Moyenne Vallée de la Loire

The terroir offers great variability in the typicity of the wines produced. Following tastings integrating several vintages, the multiple factor analysis of the sensory data revealed a group of taste criteria contributing to the notion of “Power”, referenced “Power and Harmony”, which makes it possible to differentiate wines from various terroirs of the Middle Loire Valley (Pages et al ., 1987).

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a Southwestern France vineyard

The soil plays a pivotal role in the agroecological transition processes, due to its numerous implications in production support, water regulation, air and nutrient supply, and its function of reservoir for the major part of planet biodiversity. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it gathered winegrowers from the south-west of France (Gascony), scientists, advisors and technicians, around a project focused on the biological functioning of viticultural soil and the design of better-adapted technical paths for soil protection.