Importanza del monitoraggio micro-meteorologico nella caratterizzazione del terroir

Abstract

[English version below]

Le variabili meteorologiche e micro-meteorologiche ricoprono un importante ruolo sulla risposta vegeto-produttiva della vite e di conseguenza sulla qualità delle produzioni. Utilizzando una rete wireless di sensori sono stati monitorati i parametri meteorologici e micro-meteorologici di 4 vigneti del territorio toscano e in differenti condizioni di gestione agronomica. La comparazione di Land Indicators (indici calcolati a partire dal dato meteo territoriale proveniente da una stazione meteo tradizionale situata al di fuori del vigneto) e Proximity Indicator (indici calcolati dal dato meteo prossimale rilevato all’interno del vigneto) fa emergere come le due scale di indagine offrano una caratterizzazione del terroir significativamente diversa, in particolare per quanto concerne il ciclo giornaliero della temperatura del grappolo. Lo studio dell’impatto delle diverse pratiche di gestione della chioma sul micro-clima, ha evidenziato differenze tra le tesi defogliate e non, soprattutto nei valori di temperature massime e radiazione misurate a livello del grappolo. Questo studio evidenzia come il monitoraggio micro-meteorologico sia uno strumento efficace per ottenere delle sotto-zonazioni dei vigneti soprattutto in territori caratterizzati da morfologia eterogenea e quindi da grande variabilità spaziale dei parametri ambientali.

The micro-meteorological and meteorological variables play an important role on the vegetative-productive response of the grapevine and consequently on quality products. Using a wireless sensor network, meteorological and micro-meteorological parameters of four Tuscany vineyards have been monitored and in different conditions of agronomic management. The comparison of Land Indicators (territorial data from a traditional weather station located outside the vineyard) and Proximity Indicators (proximal data monitored inside the vineyard) highlighted large differences especially with regard to the diurnal course of bunch temperature. The impact of different management practices on canopy microclimate pointed out significative differences between defoliated and non-thesis, especially in maximum temperature and solar radiation at bunch level. Present study emphasize the role of micro-meteorological monitoring in providing a reliable picture of vineyard sub-zones that can be useful in those areas characterized by an heterogeneous morphology and hence by a large spatial variability of environmental parameters.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Matese (1), F. Di Gennaro (2), L. Genesio (1) , F. P. Vaccari (1), F. Sabatini (1), M. Pieri (2)

(1) Consiglio Nazionale delle Ricerche, Istituto of Biometeorologia (CNR-IBIMET) Via G. Caproni, 8 50145 Firenze (Italia)
(2) Società Consortile Tuscania S.r.l. – Piazza Strozzi, 1 50100 Firenze (Italia)

Contact the author

Keywords

Parametri micro-meteorologici, gestione della chioma, indicatori territoriali e prossimali
Micro-meteorological parameters, canopy management, Land and Proximity indicators

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Assessment of climate change impacts on water needs and growing cycle on grapevine in three DOs of NE Spain

This study assessed the suitability of grapevine growing in three DOs (Empordà, Pla de Bages and Penedès) of Catalonia (NE Spain) over the 21st century. For this purpose, an estimation of water needs and agroclimatic and phenological indicators was made. Climate change impacts were estimated at 1 km pixel resolution using temperature and precipitation projections from several general circulation models (GCM) and two climate change scenarios: RCP 4.5 (stabilization scenario) and RCP 8.5 (worst-case scenario). Potential crop evapotranspiration (following FAO procedure) and a daily water balance considering soil water holding capacity were used to estimate actual evapotranspiration of vines and, finally, water needs. Dynamics would be similar in the three DOs studied although the magnitude of impact differs. Water needs would be 2 and 3 times greater (ranging from 0 to more than 1500 m3/ha) than current water needs at both climate change scenarios. Moreover, blooming date would advance from 3 to 6 weeks, harvest date from 1 to 2.5 months, resulting in growing cycles from 10 to 80 days shorter. It should also be noted that frost risk would decrease from 6 to 76%, the number of days with temperatures above 30ºC during ripening would rise from 48 to 500% and tropical nights (minimum temperature >20ºC) at ripening would increase from 28 to 150%, depending on the scenario and the DOs. The impacts of climate change in the three DOs could result in significant limitations for grapevine cultivation and wine production if adaptive strategies are not applied. This result could serve as a basis for the design of specific and particular adaptation strategies to improve and maintain vineyards in the DOs studied and could be extrapolated to similar DOs and regions.

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area

A mechanistic investigation of H/D scrambling processes in flavonoids

Several classes of flavonoids, such as anthocyanins, flavonols, flavanols and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues; even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D scrambling processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.