Importanza del monitoraggio micro-meteorologico nella caratterizzazione del terroir

Abstract

[English version below]

Le variabili meteorologiche e micro-meteorologiche ricoprono un importante ruolo sulla risposta vegeto-produttiva della vite e di conseguenza sulla qualità delle produzioni. Utilizzando una rete wireless di sensori sono stati monitorati i parametri meteorologici e micro-meteorologici di 4 vigneti del territorio toscano e in differenti condizioni di gestione agronomica. La comparazione di Land Indicators (indici calcolati a partire dal dato meteo territoriale proveniente da una stazione meteo tradizionale situata al di fuori del vigneto) e Proximity Indicator (indici calcolati dal dato meteo prossimale rilevato all’interno del vigneto) fa emergere come le due scale di indagine offrano una caratterizzazione del terroir significativamente diversa, in particolare per quanto concerne il ciclo giornaliero della temperatura del grappolo. Lo studio dell’impatto delle diverse pratiche di gestione della chioma sul micro-clima, ha evidenziato differenze tra le tesi defogliate e non, soprattutto nei valori di temperature massime e radiazione misurate a livello del grappolo. Questo studio evidenzia come il monitoraggio micro-meteorologico sia uno strumento efficace per ottenere delle sotto-zonazioni dei vigneti soprattutto in territori caratterizzati da morfologia eterogenea e quindi da grande variabilità spaziale dei parametri ambientali.

The micro-meteorological and meteorological variables play an important role on the vegetative-productive response of the grapevine and consequently on quality products. Using a wireless sensor network, meteorological and micro-meteorological parameters of four Tuscany vineyards have been monitored and in different conditions of agronomic management. The comparison of Land Indicators (territorial data from a traditional weather station located outside the vineyard) and Proximity Indicators (proximal data monitored inside the vineyard) highlighted large differences especially with regard to the diurnal course of bunch temperature. The impact of different management practices on canopy microclimate pointed out significative differences between defoliated and non-thesis, especially in maximum temperature and solar radiation at bunch level. Present study emphasize the role of micro-meteorological monitoring in providing a reliable picture of vineyard sub-zones that can be useful in those areas characterized by an heterogeneous morphology and hence by a large spatial variability of environmental parameters.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Matese (1), F. Di Gennaro (2), L. Genesio (1) , F. P. Vaccari (1), F. Sabatini (1), M. Pieri (2)

(1) Consiglio Nazionale delle Ricerche, Istituto of Biometeorologia (CNR-IBIMET) Via G. Caproni, 8 50145 Firenze (Italia)
(2) Società Consortile Tuscania S.r.l. – Piazza Strozzi, 1 50100 Firenze (Italia)

Contact the author

Keywords

Parametri micro-meteorologici, gestione della chioma, indicatori territoriali e prossimali
Micro-meteorological parameters, canopy management, Land and Proximity indicators

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Climate change is a great environmental challenge with large impact on the Wine and sprakling wine industry. Heat waves and dryness cause frequent sunburn damage in white grapes

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt

Sensory profile: a tool to characterize originality of wines produced without sulfites

A trend to reduce chemical inputs in wines exists, especially sulfur dioxide (SO2). This additive is widely used due to its antioxidant, antiseptic and antioxidasic properties. During without sulfites vinification, bioprotection by adding yeast on harvest could be a sulfites alternative. With extension of this wine market, sensory impact linked to sulfites absence and/or sulfites alternative should be evaluated. That’s what this approach proposes to do, focusing on sensory characteristics of wines produced with or without SO2 addition during the winemaking process. METHODS: Wines were elaborated from Merlot grapes of two maturity levels according to three modalities: SO2, without SO2 and bioprotection on harvest (mix of Torulaspora delbrueckii and Metschnikowia pulcherrima). SO2 modality was sulfited throughout the winemaking and aging processes whether other modalities received any addition. After two years of aging, sensory studies were carried out with a specific panel for one month. First, descriptors were generated to differentiate the wines, then panelists were trained on these specific descriptors for five sessions and finally wines sensory profiles were elaborated

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.