Influenza dell’esposizione del vigneto sulla maturazione dell’uva

Abstract

[English version below]

Lo studio è stato condotto in vigneti commerciali di Vitis vinifera cv Nebbiolo localizzati in Piemonte, Italia del Nord-Ovest, intorno alla sommità di una collina. L’obiettivo dello studio è stato di determinare come l’esposizione del vigneto possa influenzare il comportamento vegetativo della vite, il manifestarsi delle fasi fenologiche, e la cinetica di maturazione dell’uva con particolare riguardo all’accumulo di antociani e flavonoli. Le esposizioni più meridionali hanno indotto precocità di germogliamento e fioritura ma diminuzione della fertilità per gemma e, di conseguenza, della resa per pianta influenzando anche il peso dei grappoli, degli acini e delle bucce; hanno promosso una maggiore concentrazione dei solidi solubili nelle ultime fasi di maturazione ma la sintesi degli antociani e dei flavonoli ha subito un rallentamento durante le fasi tardive di maturazione. L’esposizione occidentale ha favorito il ritardo delle fasi fenologiche e un aumento della fertilità per gemma, del peso del grappolo e della resa produttiva, determinando un minore accumulo di solidi solubili nel mosto ma una maggiore sintesi di antociani. Si è evidenziata, in oltre, una probabile influenza della temperatura non solo sulla sintesi degli antociani ma anche dei flavonoli delle bucce.

The study was conducted in Sinio (Piedmont, Northwest Italy) in commercial vineyards of Vitis vinifera cv. Nebbiolo, situated on the top of a 30 % slope hillside, thus they were differently exposed: two of these (A) was exposed to South, another (B) to East-South-East, the fourth (C) to West-North-West. The clone CVT 141 grafted onto 420 A, was cultivated in every vineyard. Vines were VSP trained and pruned to the Guyot system (10 bud cane plus 2 bud spur). Vine theoretical density was 5200 vine/ha. The aim of this study was to determine how the vineyard exposition influences vine vegetative behaviour, phenological phase timing, grape ripening kinetic and grape properties including colour and flavonols. The results were used to characterize the vineyards in a sort of farm zoning, helping to choose the best technical management.
The 2009 vintage was characterized by a very rainy winter and spring, and a very hot summer (from mid July until the beginning of September the maximum temperature, as average, exceeded 32 °C). Bud burst and flowering resulted delayed in C, respect to A and B vineyards, whereas bud fertility was higher in C. That fact induced a higher bunch weight (313 g) in vineyard facing West (C), respect to those Southward (A and D) where bunch weight was similar (224 g) also thanks to a higher berry mass (1.87 g in A and D, 2.09 g in B, and 2.07 g in C). Furthermore, vineyard exposition influenced the vine vigour and yield that in C and D were twice that in A and B vineyards. Soluble solid content at harvest appeared higher in A, B and D (24.3 Brix as average) than in C vineyard (23.7 Brix). Southern expositions (A and D) delayed the beginning of veraison and reduced the anthocyanin concentration at harvest (600 mg/kg) respect to B (670 mg/kg) and C (770 mg/k); further differences among vineyards were observed both in the pattern of flavonol accumulation and in their concentration at harvest. In synthesis the Southern expositions advanced the phenological phases and decreased bud fertility, yield per vine and weight of bunches, berries and berry skins. In addition, it promoted a high concentration of soluble solids at harvest but not of anthocyanins whose concentration slowed down during the late phases of ripening. Western exposition (C) promoted a delay of phenological phases, and an increase of bud fertility, bunch weight and yield per vine; it induced a medium accumulation of soluble solids but the highest synthesis of anthocyanins. Due to the global warming we can expect a high variability between vintages from a weather point of view. We think that a sort of farm zoning matched with data obtained from observations executed in successive vintages could be a useful help to choose the best technical management for a specific year and to foresee in advance the vintage results.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Guidoni S., Gangemi L., Ferrandino A.

Dipartimento di Colture Arboree, Università di Torino, Via L. Da Vinci, 44. 10095 Grugliasco (TO), Italy

Contact the author

Keywords

Nebbiolo, fasi fenologiche, produttività, antociani, flavonoli
Nebbiolo, phenological phases, yield, anthocyanins, flavonols

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Relationship between chemical parameters of tannins and in-mouth attributes of grape phenolic fractions

Establish relationships between taste and mouthfeel properties of grapes and tannin-related chemical parameters. Tempranillo Tinto and Garnacha Tinta grapes were harvested from distinct blocks in different dates; each sample collection date was separated by one week. Grapes were destemmed and macerated in 15% of ethanol for one week. The polyphenolic fraction (PF) of samples was submitted to solid phase extraction on C18 cartridges and recovered with ethanol. PFs were reconstituted in wine model and their taste and mouthfeel properties were characterised by rate-K-attributes methodology. In parallel, concentration (TC) and activity (TAc) of tannins as well as the concentration of tannins linked to anthocyanins (T-A) were determined using HPLC-UV–VIS.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.