Terroir 2010 banner
IVES 9 IVES Conference Series 9 The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

Abstract

During a three-year period, the vineyards of the Carnuntum wine district are investigated for their terroir characteristics. The interdisciplinary study is aimed at the description of the physiogeographic properties of the region and at the investigation of the main viticulture functions by means of climatology parameters, geological compilation, detailed mapping of the quaternary loess/loam cover of the region, detailed soil mapping, hydrologic investigation and mineralogical, sedimentological and geochemical analyses of soil and bedrock. Additionally, winegrowers of the region are asked to complete a questionnaire regarding their experience because their local and regional knowledge plays an important part in the study. The objective of the study is to compile thematic and synoptical maps by means of GIS as a first comprehensive examination of the natural factors of environment.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type : Article

Authors

M. Heinrich (1), H. Reitner (1), A. Baumgarten (2), J. Eitzinger (3), Th. Gerersdorfer (3), J. Graßl (4), W. Laube (3), E. Murer (5), H. Pirkl (6), H. Spiegel (2), I.Wimmer-Frey (1)

(1) Geological Survey of Austria, Neulinggasse 38, A-1030 Vienna, Austria
(2) Austrian Agency for Health and Food Safety, Institute for Soil Health and Plant Nutrition, Spargelfeldstr. 191, A-1226 Vienna, Austria
(3) University of Natural Resources and Applied Life Sciences, Institute of Meteorology, Peter Jordan Str. 82, A-1190 Vienna, Austria
(4) Die Rubin Carnuntum Weingüter, Carnuntum Wine Region Cooperation, Fischamenderstr. 12/3, A-2460 Bruck an der Leitha, Austria
(5) Federal Agency for Water Management, Institute for Land and Water Management Research Pollnbergstraße 1, A-3252 Petzenkirchen, Austria
(6) Geological Office, Plenergasse 5/27, A-1180 Wien, Austria

Contact the author

Keywords

Austria, terroir, geology, soil, climate, questionnaire, GIS

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Growth in global table grape production and consumption is fueled by the introduction of new seedless varieties

Table grape consumption worldwide has experienced a remarkable growth in the first two decades of the 21st century, becoming the third most consumed fresh fruit in some countries, after bananas and apples. This increase has been attributed to several reasons, including the availability of seedless grapes, which has been a key factor in the increase in consumption.

Copper, iron and zinc in surface layer of Primošten vineyard soils

Long-term use of copper fungicides causes increased accumulation of total copper in the surface layer of vineyard soils. Many of authors has researched the anthropogenic influx of copper in such soils, which can result in environmental risks.