Terroir 2010 banner
IVES 9 IVES Conference Series 9 A zoning study of the viticultural territory of a cooperative winery in Valpolicella

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

Abstract

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential. A zoning study promoted by the Cooperative Winery Valpolicella (Negrar, Verona, Italy) was carried out with the aim of evaluating the oenological potential of the vineyards of the Winery associated growers. The final objective is to improve in general the quality of the wines and in particular to increase the production of premium wines (Amarone and Recioto).
On the basis of the results obtained from 12 reference vineyards spread on a wine territory of about 500 ha, it was possible to distinguish zones with different performances with regard to yield and technological quality of the grapes, which in turn was reflected in the quality of the corresponding wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G.B. Tornielli, E. Rovetta, E. Sartor, M. Boselli

Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, Università degli Studi di Verona. Via della Pieve 70, 37129 San Floriano (VR) – Italia

Contact the author

Keywords

zoning, grapevine, valpolicella, Corvina, soil

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.

Toward a model of grape proanthocyanidin extraction during vinification

PAs are compartmentalised within the grape berry, and differ in their composition and degree of extractability. Within each compartment, the CWM limits PA extraction firstly by its degree of permeability and secondly its ability to complex with PA molecules.

Enological technics to enhance the aromatic qualities of white spirits 

Eugenol has been identified as a quality marker in armagnac white spirits. In particular, those produced from the Baco blanc variety, the only hybrid variety authorised in a French PDO, bred since 1898 from noah (vitis labrusca x v.riparia) and folle blanche (v. Vinifera). The varietal compound of Baco blanc, eugenol has many original properties.

Oxygen transfer through cork stoppers

During wine conservation in a bottle, the control of oxygen transfer from the outside environment to the wine inside the bottle is a key parameter that determines the wine quality. Many other factors can also influence the evolution of wine during postbottling aging,

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.