Terroir 2010 banner
IVES 9 IVES Conference Series 9 Denial of the wine-growing landscape

Denial of the wine-growing landscape

Abstract

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape” tool has been used to arouse emotions and stimuli in the consumer, a study was carried out on the front and back labels of wines from heroic viticulture areas belonging to the Cervim which competed in the traditional annual mountain wine challenge. The immediate aim was to analyse the frequency of use of the message “heroic viticulture”, the form it was used in and the relative importance attributed to the message among the other information contained on the label, taking into account the geographical origin of the wines and the type of producer (private, winegrowers’ association).
The analysis showed that the viticultural landscape was used only for few wines and in different forms, favouring definitions rather than images.
It was possible to find the reasons behind the producers’ choices and for non-use (lack of available space, effective terminology and forms of communication, as well as the need for regulations on wine-labelling).
The analysis concluded that consumers and the distribution chain perceive communication of the viticultural landscape, especially heroic viticulture, as being positive for choosing and assessing the quality of a wine, while producers are still bound to traditional communication that has found neither the form nor the place for using the relationship between landscape and wine to advantage.
To sum up, it seems that mountain wine and heroic viticulture wineries still deny the validity of the message “viticultural landscape-heroic viticulture”.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Maurizio Sorbini (1), Gianluca Macchi (2)

(1) Bologna University, V. Broccoli 2/e, 40024 Castel San Pietro (Bo), Italy
(2) CERVIM, Loc Teppe Quart Aosta, Italy

Contact the author

Keywords

Heroic viticulture, Landscape, Message, Communication, Wine value

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The use of elicitors in viticulture: a tool to obtain highly colored wines with a reduce alcohol content?

Climate change is causing a gap between the technological and phenolic maturity of grapes, resulting in wines with high alcohol content and low polyphenol concentration. Another phenomenon associated with high temperatures and whose effect is more pronounced if the harvest is delayed is the decrease in the acidity of the grapes, mainly in malic acid, and an increase in pH caused by the accumulation of potassium derived from the increase in temperature. Therefore, climate change and the effects it causes on the vine leads to unbalanced wines, with high alcohol content and lack of color, with green tannins, astringency and excessively low acidity if not corrected.

Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid).

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

Analysis of mousy off-flavour wines

Winemakers are increasingly experimenting with new techniques, such as spontaneous fermentation, prolonged yeast contact, higher pH, minimal sulphur dioxid, filtration and clarification or oxidative ageing. Along with this, the risk of microbial spoilage increases, and so the off-flavour mousiness, long time underestimated, is becoming more frequent. Characteristic of the mousy off-flavour is the delayed perception after swallowing the wine. After a few seconds the flavour appears, reminiscent of a dirty mouse cage. There are three known compounds that cause mousy off-flavor: 2-ethyltetrahydropyridine, 2-acetyltetrahydopyridine, and 2-acetylpyrroline. Yeasts such as Dekkera/Brettanomyces and heterofermentative lactic acid bacteria like Lactobacillus hilgardii can release these compounds.