Terroir 2010 banner
IVES 9 IVES Conference Series 9 Denial of the wine-growing landscape

Denial of the wine-growing landscape

Abstract

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape” tool has been used to arouse emotions and stimuli in the consumer, a study was carried out on the front and back labels of wines from heroic viticulture areas belonging to the Cervim which competed in the traditional annual mountain wine challenge. The immediate aim was to analyse the frequency of use of the message “heroic viticulture”, the form it was used in and the relative importance attributed to the message among the other information contained on the label, taking into account the geographical origin of the wines and the type of producer (private, winegrowers’ association).
The analysis showed that the viticultural landscape was used only for few wines and in different forms, favouring definitions rather than images.
It was possible to find the reasons behind the producers’ choices and for non-use (lack of available space, effective terminology and forms of communication, as well as the need for regulations on wine-labelling).
The analysis concluded that consumers and the distribution chain perceive communication of the viticultural landscape, especially heroic viticulture, as being positive for choosing and assessing the quality of a wine, while producers are still bound to traditional communication that has found neither the form nor the place for using the relationship between landscape and wine to advantage.
To sum up, it seems that mountain wine and heroic viticulture wineries still deny the validity of the message “viticultural landscape-heroic viticulture”.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Maurizio Sorbini (1), Gianluca Macchi (2)

(1) Bologna University, V. Broccoli 2/e, 40024 Castel San Pietro (Bo), Italy
(2) CERVIM, Loc Teppe Quart Aosta, Italy

Contact the author

Keywords

Heroic viticulture, Landscape, Message, Communication, Wine value

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements.

Recent advances in measuring, estimating, and forecasting grapevine yield and quality

Grapevine yield and fruit quality are two major drivers of input allocation and, ultimately, revenue for grape producers. Because yield and fruit quality vary substantially from year-to-year and within a single block, opportunities exist for optimization via precision management activities that could lead to more profitable and sustainable grape production. Here, we review recent advances in the techniques and technology used to measure, estimate, and forecast grapevine yield and fruit quality. First, we discuss direct “measurement” of yield and quality (i.e. ground-truth data generation), with an emphasis on potential for scalability and automation. Second, we discuss technology and techniques that do not directly measure yield and quality, but use correlated measurements for their estimation.

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.

Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

This study was conducted on soil-climate-plant relations (terroir) and their impact on grape composition and wine quality in the canton of Vaud by Agroscope Changins-Wädenswil ACW

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.