Terroir 2008 banner
IVES 9 IVES Conference Series 9 Copper, iron and zinc in surface layer of Primošten vineyard soils

Copper, iron and zinc in surface layer of Primošten vineyard soils

Abstract

Long-term use of copper fungicides causes increased accumulation of total copper in the surface layer of vineyard soils. Many of authors has researched the anthropogenic influx of copper in such soils, which can result in environmental risks. The research revealed that vineyard soils contain 288.52 mg/kg of copper, 102.20 mg/kg of zinc, and 28.86 g/kg of iron on average. Considering the average concentrations of the metals under research, all soils under research are highly contaminated with zinc (So=0.50), and polluted with copper (So=4.76), according to Bašić (1994). Each of the vineyard soils under research is contaminated with copper, according to the “By-laws on Protection of Cultivated Land from Contamination by Hazardous Substances” (National Gazette No. 15/1992). There is a significant difference in concentrations of total copper between the vineyard and forest soils based on the variant analyses results (Fexp = 5.60*). The research results indicate that copper and zinc are fully correlated. 94.09% of the total copper variation occurred due to a modified concentration of total zinc in the soil, while the remaining 5.91% was caused by some other factors. According to the same results, copper and iron are very weakly negatively correlated. 1.7% of the total copper variation occurred due to a modified concentration of total iron in the soil, while the remaining 98.3% was caused by some other factors. The results are a contribution to the inventory of heavy metals in vineyards.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Elda VITANOVIĆ (1), Željko VIDAČEK (2), Miro KATALINIĆ (1), Sonja KAČIĆ (1), Boško MILOŠ (1)

(1) Institute for Adriatic Crops and Karst Reclamation, Put duilova 11, 21000 Split, Croatia
(2) Faculty of Agriculture, Department of Pedology, Svetošimunska 35, 10000 Zagreb, Croatia

Contact the author

Keywords

heavy metals, copper, iron, zinc, vineyard (anthropogenic) soils

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Ochratoxin A (OTA) is a mycotoxin produced by several filamentous fungi infecting grape bunches (Penicillium and Aspergillus spp.), this toxin pass to must when grapes are crushed and later it is found in wine. Following the evaluations of the toxicity of OTA, European Commission Regulations have been promulgated introducing upper limits for OTA concentrations in various commodities (cereals, cereal products, dried vine fruit, coffee, wine, grape juice, baby foods and dietary foods for special medical purposes).

Pratiques de taille et développement des jeunes vignes

Dans le cadre de TerclimPro 2025, Gonzaga Santesteban a présenté l’article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8465

Climatic groups in Ibero-America viticulture compared to worldwide wine producer regions

The wine production is an important activity in many Ibero-American countries. The wine producer regions of these countries configure a large use of different climate types and viticultural climates.

Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Vineyard soil surveys can be costly and time consuming. The Soils Information System (SIS) provides a set of tools to do a quick evaluation of soil physical properties in the vineyard. First, a system equipped with GPS and EM38 equipment, provides a very precise DEM and a soil electrical conductivity map. Specific sampling points are located for a tractor-mounted geotechnical probe to make soil physical measurements.

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.