Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Agroclimatic characterization of Monreale DOC appellation for vine growing

Agroclimatic characterization of Monreale DOC appellation for vine growing

Abstract

This paper presents the results of an agroclimatic study of the viticulture area called DOC Monreale (Pa), Italy, which was carried out with the aim to supply a working instrument supporting viticulture planning. The global extension of the municipalities belonging to DOC Monreale is about 98,000 ha, where vine-growing is estimated at about 11,500 ha, 177 of which have DOC appellation. These municipalities are Camporeale, Corleone, Monreale, Piana degli Albanesi, Roccamena, Santa Cristina Gela, San Cipirello and San Giuseppe Jato. The vines provided for DOC Monreale are mostly autochthonous varieties such as Catarratto bianco, Grillo, Ansonica, Nero d’Avola, Perricone etc.; some allochthonous varieties are provided as well, such as Pinot blanc, Chardonnay, Merlot, Pinot noir, Cabernet Sauvignon, Sangiovese, Syrah etc. The training systems adopted are espalier and gobelet.
The agroclimatic analysis concerned rainfalls, temperatures, vine specific bioclimatic indexes (Winkler, Huglin, Branas and Fregoni), ET0, and hydro-cultural consumptions. The agrometeorological data were provided by the Sicilian Agrometeorological Informative Service (SIAS) having one weather station at Camporeale (37°54’08″N, 13°06’03″W), and by Regional Hydrographical Service (SI) having one weather station at San Giuseppe Jato (37°58’27″N, 13°12’35″W) at 450 m a.s.l..
The study allowed achieving a macro – characterization of DOC Monreale territory, which is functional to any kind of further study for territorial programming, to an adequate selection of cultivars, as well as to the increase of vine growing discipline and the choice of effective agronomic management techniques.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Michelangelo POLICARPO (1), Vincenzo PERNICE (1), Giuseppe DIMINO (2) and Dario CARTABELLOTTA (2)

(1) Vivaio Federico Paulsen – Regione Siciliana, Via A. Lo Bianco 1, 90144 – Palermo, Italy
(2) Dipartimento Interventi Infrastrutturali – Regione Siciliana, Viale R. Siciliana 2771, 90145 – Palermo, Italy

Contact the author

Keywords

bioclimatic indexes, temperature, territory, GIS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Phloem anatomy traits predict maximum sugar accumulation rates

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications.

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]

Mitigating the effects of climate change on berry composition by canopy management

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications.