Terroir 2008 banner
IVES 9 IVES Conference Series 9 Prospects for enlarging of microzone Manavi in the East Georgia

Prospects for enlarging of microzone Manavi in the East Georgia

Abstract

The experimental studies conducted in the eastern Georgia in Sagarejo administrative district on the foothills of the southern slope of Tsiv-Gombori range reveal the possibility of enlarging Manavi traditional specific zone to the north-west (from Giorgitsminda to Khashmi), at 500-750 m above sea level. Transitional climate from dry subtropical to moderately humid, relief, black cinnamonic soils, distinguished quantitative indices of the Kahuri Mtsvane grape cultivar provide the best conditions for production of European type wine – Manavi source region. The wine has light-straw color, greenish tint, soft taste, harmonious, exquisite, with fruit aroma and developed bouquet.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Dr. Maya Mirvrelashvili, Dr. Tamaz Kobaidze, Dr. Temur Dekanosidze, Dr. Vazha Gogotidze

Georgian Research Institute of Horticulture, Viticulture and Winemaking, №6 Marshal Gelovani ave. Georgia, Tbilisi

Contact the author

Keywords

Kakhuri Mtsvane, wine Manavi, micro climate, landscape, microzone

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

UV-VIS-NIR spectroscopy as a tool for predicting volatile compounds in grape must

The wine sector is one of the most significant industries worldwide, with Spain being a leading country in wine production and export. A key factor in wine quality is its aroma, which is directly influenced by the volatile compounds present in the grape, with terpenes being among the most significant contributors.

The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland

Aims: Agroscope investigated the efficiency of nitrogen fertilization via foliar urea application at veraison with the aim of raising the YAN (yeast assimilable nitrogen) content in the musts. The observations were conducted on the white grapevine cultivar Doral (Chasselas x Chardonnay) in several pedoclimatic conditions of the Leman wine region, Switzerland, in the years 2012 and 2013. Knowing that the YAN in must plays a key role in wine quality, the aim was finding the main parameters affecting the final YAN level in order to better control them.

Territorio e vino tra immagine e comunicazione

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.