Great highlands wine growing terroir: conditions and expressions

Abstract

During 1982 started our wine growing project at the Puntalarga Hill, between 2500 and 2600 meters a.s.l.: 5.78 ºN, 72.98 ºW. Pinot noir, white Riesling and Riesling x Silvaner crossings are the most planted grapevines. Since 1984 research and development activities are carried out on pertinent subjects.
Low latitude, high altitude, relatively low rainfall, frequent atmospheric transparency, determines intensity and spectral composition of incident solar radiation, day/night temperature change extent and low night values that are the tropical highland’s climate features of the region.
Coexistence over the year of all grapevine developmental stages and the production of vintages with good sugar content and acidity levels, suitable for the production of wine remarkable in aroma and color intensity, are possible under those conditions.
Vine behavior and grape and wine characteristics indicate that at low respiratory losses, local climatic conditions could be considered thermally equivalent to those of temperate wine growing regions, with similar Huglin’s index values. At the localization of the project, the climatic conditions over the year are similar to those of autumnal ripening time in a temperate climate. At the same time acting solar radiation is UV-B rich. Both factors result in special features of local grapes that could be considered as being terroir expressions.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

MARCO QUIJANO – RICO

Viñedo & Cava Loma de Puntalarga, Nobsa, Colombia, P.O. Box / A.P. 048 Sogamoso

Contact the author

Keywords

altitude, radiation, température, maturation, originalité

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

Aroma accumulation trends during berry development and selection of grape aroma candidate genes suitable for functional characterization

Grape flavour management in the vineyard requires knowledge of the derivation of individual flavour and aroma characteristics and the effects that different concentrations and interactions between these compounds have on flavour potential.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.