Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 Relationship between terroir and vegetative potential, productivity, yield and must composition of Vitis Vinífera L. Cvs. Cabernet Sauvignon under warm climate conditions

Relationship between terroir and vegetative potential, productivity, yield and must composition of Vitis Vinífera L. Cvs. Cabernet Sauvignon under warm climate conditions

Abstract

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.
This work has been developed in several zones of Cádiz town: Arcos de la Frontera, Jerez de la Frontera (Gibalbín), Jerez de la Frontera (Macharnudo), Jerez de la Frontera (Torrecera) and Sanlúcar de Barrameda. It was selected parcels with Cabernet Sauvignon cultivars and with similar growing characteristics. It was studied mesoclimatic factors, physiological and agronomic behaviour of the plant and grape, must properties of 2006 and 2007 harvest over all the zones.
Our mesoclimatic factors results show difference amount zones studied, these are strongly influenced mainly by the proximity or distance to the cost. This effect modified physiological characteristic of the plant and grape, must and wine properties, and its obtained significant differences over the several zones studied. Besides, it’s observed differences amount wines related to zones characteristic.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

SERRANO M.J., PUERTAS B., CANTOS E., GARCIA DE LUJAN A.

IFAPA Centro Rancho de la Merced Ctra. Trebujena, Km 3.2, 11471, Jerez de la Frontera, España. Consejería de Innovación, Ciencia y Empresa. Junta de Andalucía

Contact the author

Keywords

terroir, Cabernet Sauvignon, vegetative potencial, must

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Influence of pre-fermentative steps on varietal thiol precursors

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH),

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Post-spring frost canopy development and fruit composition in cv. Barbera grapevines

One of the effects of warming trends is the advance of budburst, increasing the frequency of spring frost-related damage. In April 2021, a severe frost event affected central and northern italian viticulture. In a cv. Barbera vineyard located in the Colli Piacentini wine district, after such occurrence, vines were tracked and growth of primary bud shoots (PBS), secondary bud shoots (SBS), and suckers (SK) was monitored, as well as their fruitfulness and fruit composition. Vine performances were then compared to those of the previous year, when no post-budburst freezing temperatures occurred. The goal of the study was to evaluate the efficacy of SBS in restoring yield loss due to PBS injuries and analyze respective contribution to fruit composition.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).