Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Intra-block variations of vine water status in time and space

Intra-block variations of vine water status in time and space

Abstract

Vine water status was measured on 96 plots of three vines inside a vineyard block of 0.28 ha during three years: 2003, 2004 and 2005. Three physiological indicators were implemented: stem water potential, carbon isotope discrimination measured on grape sugars at ripeness (δ13C) and canopy temperature measured by high resolution remote sensing. For stem water potential, measurements were taken on every single vine of each plot. The objectives of this study were to assess (i) the spatial distribution of vine water status inside a vineyard block, (ii) the temporal stability of this distribution from one date to another in the same year and (iii) the temporal stability of this distribution from one year to another. The three physiological indicators provided accurate data of vine water status, as was shown by high correlation coefficients between stem water potential values and canopy temperature, as well as between stem water potential and δ13C. Vine water status maps obtained with either stem water potential data or δ13C data showed similar patterns of spots that were more or less affected by water deficit stress, in relation to local soil water holding capacity. Stem water potential was measured in September 2004 on two days in a row, one cloudy day and the next day with higher temperatures and clear conditions. Stem water potential values were highly correlated between these two days, which confirms the fact that stem water potential is mainly influenced by soil water status. However, stem water potential values were in average 0.08 MPa higher on the cloudy day, which shows a measurable but limited influence of evaporative demand on absolute stem water potential values. Both stem water potential values and δ13C data were well correlated from one year to another, which shows a stability of spatial distribution of vine water status inside the block. This can be explained by the fact that soil water holding capacity is invariable from one year to another. Surprisingly, stem water potential values measured at the same time between vine 1, vine 2 and vine 3 of each plot were not very well correlated, although the soil can be considered homogeneous inside a plot (3 m2). This observation shows high variability in vine to vine water status, in relation to individual vine rooting depth and canopy size. Consequently, replicates on several adjacent vines have to be averaged out to obtain accurate vine water status data for each plot.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Cornelis van LEEUWEN (1), Jean-Pascal GOUTOULY (2), Anne-Marie COSTA-FERREIRA (1), Cloé AZAÏS (1), Elisa MARGUERIT (1), Jean-Philippe ROBY (1), Xavier CHONE (1), Christian GERMAIN (1), Saeid HOMAYOUNI (1) and Jean-Pierre GAUDILLERE (2)

(1) ENITA de Bordeaux, 1 cours du Général de Gaulle, CS 40201, 33175 Gradignan cedex, France
(2) INRA-ECAV, B.P. 81, 33883 Villenave d’Ornon, France

Contact the author

Keywords

Vine water status, precision viticulture, carbon isotope discrimination, stem water potential

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Understanding provenance and terroir in Australian Pinot noir

Aims: This study aimed to (1) characterise colour and phenolic profiles of commercial Australian Pinot noir wines, (2) understand regional drivers of sensory and volatile profiles of commercial Australian Pinot noir wines, and (3) generate a deeper understanding of where Australian Pinot noir wines profiles sit in an international context.

Investigation on harvesting period choices for correct interpretation of experimental results

Happens too often in scientific papers to find the same harvesting period of a cultivar, although the used treatment influence a maturity curve of investigated thesis.
This inevitably leads to wrong conclusions when comparing the treatment effects, since obtained on maturity stages more or less far from those technologically correct.

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

A Viticultural Terroir in Brazil: Change and continuity

The viticultural terroir at the Serra Gaúcha region, in Rio Grande do Sul State, Brazil, is analyzed under historical and sociological viewpoints, aiming to understand the origin of its characteristics, and the risks for its continuity.

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes