Terroir 2006 banner
IVES 9 IVES Conference Series 9 Incidences of the climate, the soil and the harvest date on Colombard aromatic potential in Gascony

Incidences of the climate, the soil and the harvest date on Colombard aromatic potential in Gascony

Abstract

This experiment tries to characterize the role of soil, climate and harvest date on the composition of grape-derivated thiols, 3-mercapto-hexanol (3MH) and 3-mercapto-hexile acetate (A3MH), in the white wines from Colombard varieties in Gascony (South-West of France). A network of 6 plots has been observed since 1999 on different pedologic units. The plots have common agronomical characteristics, plantation spacing (2,900 to 3,500 vines per ha), plantation aging (1985-1990), strength conferred by rootstock (SO4, RSB), soil management (grass covered 1 by 2) and training system (vertical shoot positionning pruned in single Guyot). Meteorological stations are located near the plots. Climatology is characterized by sums of temperatures and rainfalls during the vegetative growth. Vine water status is determined by stem water potential. The results show that it is possible to define 2 major kinds of soil, confirmed by measurement of primary shoot growth rate and his date of cessation growth. Grapes are harvested in 3 times between 40 and 55 days after veraison and vinified on a standart protocol. Grape-derivated thiol rate (3MH, A3MH) quantified in wines is dependant on the vintage conditions. Temperature variables seem to contribute to the presence of sulphur compounds in wines as well as the length of non-cutted primary shoot. An early harvest date does not benefit to increase grape-derivated thiols quantity in Colombard wines. Late harvest wines show better mouth balance and better aroma characteristic when tasted by expert group.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

T. DUFOURCQ (1), R. SCHNEIDER (2), R. RENARD (1) and E. SERRANO (1)

(1) ITV France, Midi-Pyrénées, V’INNOPOLE, 81310 Lisle/Tarn, France
(2) ITV France, INRA-UMR Sciences pour l’œnologie, 2 place Viala, 34060 Montpellier, France

Contact the author

Keywords

climate, soil, vine water status, Colombard, grape-derivated thiol

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Dimethyl sulfide: a compound of interest from grape to wine glass

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

​For several years, the chemistry of taste has aroused high interest both from academics and industrials. Plant kingdom is a rich and reliable source of new taste-active compounds. Many sweet, bitter or sour molecules have been identified in various plants [1]. They belong to diverse chemical families and their sensory properties are strongly affected by slight structural modifications. As a consequence, the investigation of natural taste-active products in a given matrix appears as a major challenge for chemists. Such studies are particularly relevant in oenology since they allow a better understanding of wine and spirit taste.

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.