Terroir 2004 banner
IVES 9 IVES Conference Series 9 Evaluation of the site index model for viticultural zoning

Evaluation of the site index model for viticultural zoning

Abstract

[English version below]

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande. L’objet du présent exposé est l’analyse de bases de données viticoles du Val de Loire (France) constituées à partir de parcelles d’essai « terroirs » de Cabernet franc et de Chenin, sur de plus longues périodes. Dans les cas où les valeurs du SI étaient faibles, aucune corrélations entre le SI et les paramètre viticole n’ont été observés. L’index de site peut être un outil additionel s’ajoutant à la liste des charactéristiques servant à évaluer les vignobles. Le SI serait particulièrement utile lorsque les variables tel que profondeur du sol, texture, présence de cailloux, de même que les conditions hydriques et température ambiante de l’air sont particulièrement différentes au niveau des sites comparés.

A composite variable termed the Site Index (SI), integrating soil physical properties and mesoclimate, was previously proposed for characterisation of vineyard sites based on a three-year study of Cabernet Sauvignon vineyards in the Hawke’s Bay region of New Zealand. In this paper, viticultural data collected from Chenin Blanc and Cabernet Franc vineyard sites in the Loire Valley (France) were analysed. These analyses provided an opportunity for validation and understanding of limitations of the SI model. The relationship between SI and Chenin Blanc fruit composition in Anjou was found to be similar to that determined in the New Zealand study. In this study, a modified SI that included winter rainfall was found to be a better predictor of grapevine vigour than original SI. In cases when the range of SI values between sites was small, no significant correlation between SI and viticultural variables was observed. Factor analysis extracted one factor best related to SI and fruit quality potential, and the second factor related to modified SI that included winter rainfall and vegetative vigour. It was determined that SI has the potential to be included as an additional indicator to the range of attributes available for vineyard site evaluation. It would be particularly useful where input variables (soil depth, texture, rockiness, water influx and air temperature) are considerably different between sites that are being compared.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Tesic (1) and G. Barbeau (2)

(1) National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
(2) Unite de recherches sur le vigne et le vin, INRA Centre d’Angers. 42, Rue Georges Morel BP57, 49071 Beaucouze CEDEX, France

Contact the author

Keywords

Terroir, modelling, phenology, fruit composition, Chenin Blanc, Cabernet Franc

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Corvina and Corvinone grape berries grown in different areas and their aptitude to postharvest dehydration

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes.

Un exemple de valorisation d’une étude de terroir au sein d’une unité coopérative de production à Saint Hilaire d’Ozilhan (Gard) dans les cotes du Rhône

The winegrowers of the intercommunal cooperative cellar of Saint Hilaire d’Ozilhan have been practicing terroir selection for ten years. Five years ago, after having equipped themselves with an efficient commercial structure, and anxious to improve knowledge of their terroirs and to better control quantitatively and qualitatively the range of typicality that they can develop, they asked the Syndicate Général des Vignerons Réunis des Côtes du Rhône and the Institut Coopératif du Vin to help them set up an approach to better judge the behavior of the Grenache and Syrah grape varieties in the different terroirs, then to enhance this work through the improving product quality.

Applying artificial intelligence for improving grape yield estimation: A case study of wine and table grapes in South Africa

Accurate grape yield estimation is essential for effective vineyard management, crop planning, and resource allocation. Traditional methods often involve time-consuming and labour-intensive processes, which may introduce errors due to the large size and inherent spatial variability of the vineyard blocks.

Shading nets for the adaptation to climate change: effect on vine physiology and grape quality 

Viticulture is threatened by the environmental modification caused by climate change. Higher temperatures determine an acceleration of the ripening process, which can be detrimental to wine quality. In the mediterranean area, heat waves are also increasingly frequent, with consequent blocking of the vegetative activity of the vines and increased susceptibility to sunburn damage. thus, adaptation strategies are necessary to reduce stress and improve the quality of grape production. Amongst the various techniques available, shading nets represent an interesting alternative for their effects on canopy microclimate (i.e., reduction of photosynthetic activity, improvement of water use efficiency, and slowing down in the ripening process).