Terroir 2004 banner
IVES 9 IVES Conference Series 9 Evaluation of the site index model for viticultural zoning

Evaluation of the site index model for viticultural zoning

Abstract

[English version below]

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande. L’objet du présent exposé est l’analyse de bases de données viticoles du Val de Loire (France) constituées à partir de parcelles d’essai « terroirs » de Cabernet franc et de Chenin, sur de plus longues périodes. Dans les cas où les valeurs du SI étaient faibles, aucune corrélations entre le SI et les paramètre viticole n’ont été observés. L’index de site peut être un outil additionel s’ajoutant à la liste des charactéristiques servant à évaluer les vignobles. Le SI serait particulièrement utile lorsque les variables tel que profondeur du sol, texture, présence de cailloux, de même que les conditions hydriques et température ambiante de l’air sont particulièrement différentes au niveau des sites comparés.

A composite variable termed the Site Index (SI), integrating soil physical properties and mesoclimate, was previously proposed for characterisation of vineyard sites based on a three-year study of Cabernet Sauvignon vineyards in the Hawke’s Bay region of New Zealand. In this paper, viticultural data collected from Chenin Blanc and Cabernet Franc vineyard sites in the Loire Valley (France) were analysed. These analyses provided an opportunity for validation and understanding of limitations of the SI model. The relationship between SI and Chenin Blanc fruit composition in Anjou was found to be similar to that determined in the New Zealand study. In this study, a modified SI that included winter rainfall was found to be a better predictor of grapevine vigour than original SI. In cases when the range of SI values between sites was small, no significant correlation between SI and viticultural variables was observed. Factor analysis extracted one factor best related to SI and fruit quality potential, and the second factor related to modified SI that included winter rainfall and vegetative vigour. It was determined that SI has the potential to be included as an additional indicator to the range of attributes available for vineyard site evaluation. It would be particularly useful where input variables (soil depth, texture, rockiness, water influx and air temperature) are considerably different between sites that are being compared.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Tesic (1) and G. Barbeau (2)

(1) National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
(2) Unite de recherches sur le vigne et le vin, INRA Centre d’Angers. 42, Rue Georges Morel BP57, 49071 Beaucouze CEDEX, France

Contact the author

Keywords

Terroir, modelling, phenology, fruit composition, Chenin Blanc, Cabernet Franc

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines.

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

Introducing heterogeneity measurements in terroir studies. Application in the região demarcada do douro (n portugal)

Terroir zoning studies have to manage the heterogeneity and complexity of the landscape properties and processes. The varying geology is one of the main landscape properties conditioning the spatial variability of terroirs.

Grapevine downy mildew development as affected by chitosan spray treatments and metabolomics implications

Chitosan has been shown to enhance grapevine tolerance toward downy mildew while reducing the environmental impact of traditional protection products.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.