Terroir 2004 banner
IVES 9 IVES Conference Series 9 Evaluation of the site index model for viticultural zoning

Evaluation of the site index model for viticultural zoning

Abstract

[English version below]

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande. L’objet du présent exposé est l’analyse de bases de données viticoles du Val de Loire (France) constituées à partir de parcelles d’essai « terroirs » de Cabernet franc et de Chenin, sur de plus longues périodes. Dans les cas où les valeurs du SI étaient faibles, aucune corrélations entre le SI et les paramètre viticole n’ont été observés. L’index de site peut être un outil additionel s’ajoutant à la liste des charactéristiques servant à évaluer les vignobles. Le SI serait particulièrement utile lorsque les variables tel que profondeur du sol, texture, présence de cailloux, de même que les conditions hydriques et température ambiante de l’air sont particulièrement différentes au niveau des sites comparés.

A composite variable termed the Site Index (SI), integrating soil physical properties and mesoclimate, was previously proposed for characterisation of vineyard sites based on a three-year study of Cabernet Sauvignon vineyards in the Hawke’s Bay region of New Zealand. In this paper, viticultural data collected from Chenin Blanc and Cabernet Franc vineyard sites in the Loire Valley (France) were analysed. These analyses provided an opportunity for validation and understanding of limitations of the SI model. The relationship between SI and Chenin Blanc fruit composition in Anjou was found to be similar to that determined in the New Zealand study. In this study, a modified SI that included winter rainfall was found to be a better predictor of grapevine vigour than original SI. In cases when the range of SI values between sites was small, no significant correlation between SI and viticultural variables was observed. Factor analysis extracted one factor best related to SI and fruit quality potential, and the second factor related to modified SI that included winter rainfall and vegetative vigour. It was determined that SI has the potential to be included as an additional indicator to the range of attributes available for vineyard site evaluation. It would be particularly useful where input variables (soil depth, texture, rockiness, water influx and air temperature) are considerably different between sites that are being compared.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Tesic (1) and G. Barbeau (2)

(1) National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
(2) Unite de recherches sur le vigne et le vin, INRA Centre d’Angers. 42, Rue Georges Morel BP57, 49071 Beaucouze CEDEX, France

Contact the author

Keywords

Terroir, modelling, phenology, fruit composition, Chenin Blanc, Cabernet Franc

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water.

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

A multidisciplinary approach to assess the impact of future drought scenarios on vineyard ecosystems

Drought events can strongly affect grapevine and berry physiology and subsequent wine quality, as widely demonstrated in controlled experiments.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.