terclim by ICS banner
IVES 9 IVES Conference Series 9 AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

Abstract

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

An extensive survey was conducted on 18 monovarietal Italian still white wines with the aim of elucidating the behaviours of different volatile compounds during aging. In particular, a range of volatile compounds including terpenes, norisoprenoids, benzenoids and volatile sulfur compounds was investigated. A total of 108 different samples were analysed, including Nosiola, Vermentino, Müller-Thurgau, Greco di Tufo, Garganega, Lugana, Erbaluce di Caluso, Pinot Grigio, Cortese, Arneis, Albana, Pallagrello, Falanghina, Fiano, Ribolla Gialla, Vernaccia, Gewürztraminer, Verdicchio. All wines were adjusted to 30 mg/L of free SO2 and submitted to an accelerated aging protocol involving storage for 30 days 10 °C, 40 °C and 60°C in oxygen-free environment. Volatile compounds were analysed by means a combination of analytical methods based on SPME-GC-MS.

During aging some common trends were observed, among which a decrease in linear terpenes and an increase in bicyclic terpenes, non-megastigmane norisoprenoids and volatile sulfur compounds. From a quantitative point of view, the extent of these transformations varied significantly according to wine type. Besides Gewürztraminer, which was generally rich in terpenes, other wine types such as Vermentino Verdicchio and Lugana showed peculiar terpene patterns, for example accumulation of above-threshold levels of the bicyclic terpene 1,4-cineole. Regarding non-megastigmane norisoprenoids, Falanghina and Vermentino were found to accumulate high levels of TDN and vitispirane, which was not observed in other wines. Greco accumulated during aging the highest amount of DMS, showing an average content above the odor threshold. Müller-Thurgau, Nosiola and Vermentino also showed concentrations of DMS above the odor threshold after aging. In addition, the latter varieties also showed high accumulation of methanethiol.

As most of these patterns were not seen in young wines, this work highlights the important contribution of aging to the expression of aroma characters that are specific to the identity of individual varieties or wine types.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Giovanni Luzzini1, Nicole Furlan1, Davide Slagheanufi1, Susana Río Segade2, Paola Piombino3, Giuseppina Paola Parpinello4, Matteo Marangon5, Fulvio Mattivi6,7 Maurizio Piergiovanni6,8, Silvia Carlin7, Maurizio Ugliano1

1. University of Verona, Department of Biotechnology, 37039, San Pietro in Cariano (VR) Italy
2. Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
3. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100 Avellino (AV), Italy
4. Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena (FC), Italy
5. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Le-gnaro (PD), Italy
6. Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige (TN) Italy
7. Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all’Adige (TN) Italy
8. Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), 43124, Parma (PR), Italy

Contact the author*

Keywords

Volatile compounds, white wine, Aging pattern, Varietal typicality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.